[1] Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P. Molecular Biology of the Cell. 4th ed. Garland Science; 2002.
[2] Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, et al. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death & Differentiation 2018;25:486–541. https://doi.org/10.1038/s41418-017-0012-4.
[3] Folkman J. Tumor angiogenesis: therapeutic implications. N Engl J Med 1971;285:1182–6. https://doi.org/10.1056/NEJM197111182852108.
[4] Adams RH, Alitalo K. Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 2007;8:464–78. https://doi.org/10.1038/nrm2183.
[5] Carmeliet P, Jain RK. Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases. Nat Rev Drug Discov 2011;10:417–27. https://doi.org/10.1038/nrd3455.
[6] Wilson WR, Hay MP. Targeting hypoxia in cancer therapy. Nat Rev Cancer 2011;11:393–410. https://doi.org/10.1038/nrc3064.
[7] Cairns RA, Harris IS, Mak TW. Regulation of cancer cell metabolism. Nat Rev Cancer 2011;11:85–95. https://doi.org/10.1038/nrc2981.
[8] Hilger D, Masureel M, Kobilka BK. Structure and dynamics of GPCR signaling complexes. Nature Structural & Molecular Biology 2018;25:4–12. https://doi.org/10.1038/s41594-017-0011-7.
[9] Rajagopal S, Shenoy SK. GPCR desensitization: Acute and prolonged phases. Cell Signal 2018;41:9–16. https://doi.org/10.1016/j.cellsig.2017.01.024.
[10] Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell 2010;141:1117–34. https://doi.org/10.1016/j.cell.2010.06.011.
[11] Jiang WG, Sanders AJ, Katoh M, Ungefroren H, Gieseler F, Prince M, et al. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin Cancer Biol 2015;35 Suppl:S244–75. https://doi.org/10.1016/j.semcancer.2015.03.008.
[12] Topalian SL, Taube JM, Anders RA, Pardoll DM. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat Rev Cancer 2016;16:275–87. https://doi.org/10.1038/nrc.2016.36.
[13] Buck AK, Reske SN. Cellular origin and molecular mechanisms of 18F-FDG uptake: is there a contribution of the endothelium? J Nucl Med 2004;45:461–3.
[14] Oh J-R, Ahn B-C. False-positive uptake on radioiodine whole-body scintigraphy: physiologic and pathologic variants unrelated to thyroid cancer. Am J Nucl Med Mol Imaging 2012;2:362–85.
[15] Wissing MD, van Leeuwen FWB, van der Pluijm G, Gelderblom H. Radium-223 chloride: Extending life in prostate cancer patients by treating bone metastases. Clin Cancer Res 2013;19:5822–7. https://doi.org/10.1158/1078-0432.CCR-13-1896.
[16] Drake MT, Clarke BL, Khosla S. Bisphosphonates: Mechanism of Action and Role in Clinical Practice. Mayo Clin Proc 2008;83:1032–45.
[17] Szabo Z, Alachkar N, Xia J, Mathews WB, Rabb H. Molecular imaging of the kidneys. Semin Nucl Med 2011;41:20–8. https://doi.org/10.1053/j.semnuclmed.2010.09.003.
[18] Gaertner FC, Halabi K, Ahmadzadehfar H, Kürpig S, Eppard E, Kotsikopoulos C, et al. Uptake of PSMA-ligands in normal tissues is dependent on tumor load in patients with prostate cancer. Oncotarget 2017;8:55094–103. https://doi.org/10.18632/oncotarget.19049.
[19] Childs A, Vesely C, Ensell L, Lowe H, Luong TV, Caplin ME, et al. Expression of somatostatin receptors 2 and 5 in circulating tumour cells from patients with neuroendocrine tumours. British Journal of Cancer 2016;115:1540–7. https://doi.org/10.1038/bjc.2016.377.
[20] Buckle T, Kuil J, Berg NS van den, Bunschoten A, Lamb HJ, Yuan H, et al. Use of a Single Hybrid Imaging Agent for Integration of Target Validation with In Vivo and Ex Vivo Imaging of Mouse Tumor Lesions Resembling Human DCIS. PLOS ONE 2013;8:e48324. https://doi.org/10.1371/journal.pone.0048324.
[21] Dilillo M, Ait-Belkacem R, Esteve C, Pellegrini D, Nicolardi S, Costa M, et al. Ultra-High Mass Resolution MALDI Imaging Mass Spectrometry of Proteins and Metabolites in a Mouse Model of Glioblastoma. Sci Rep 2017;7:603. https://doi.org/10.1038/s41598-017-00703-w.
[22] Heneweer C, Holland JP, Divilov V, Carlin S, Lewis JS. Magnitude of enhanced permeability and retention effect in tumors with different phenotypes: 89Zr-albumin as a model system. J Nucl Med 2011;52:625–33. https://doi.org/10.2967/jnumed.110.083998.
[23] Phelps ME, editor. Cherry SR and Dalhoun M. PET, Molecular Imaging and its Biological Application. PET: physics, instrumentation and scanners, New York: Springer-Verlag; 2006. https://doi.org/10.1007/0-387-34946-4.
[24] Cherry, S, Sorenson, J, Phelps, M. Physics in Nuclear Medicine - 4th Edition. Saunders; 2003.
[25] Hendee, W, Ritenour, E. Medical Imaging Physics, 4th Edition | Wiley. 4th ed. New York: Wiley-Liss; 2002.
[26] Ernst RR, Bodenhausen, G, Wokaun, A. Principles of nuclear magnetic resonance in one and two dimensions. Clarendon; 1987.
[27] Council Directive 2013/59/Euratom of 5 December 2013 laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation, and repealing Directives 89/618/Euratom, 90/641/Euratom, 96/29/Euratom, 97/43/Euratom and 2003/122/Euratom n.d.:73.
[28] Valentin, J. ICRP Publication 103 The 2007 Recommendations of the International Commission on Radiological Protection. ICRP 103 2007;37.
[29] Bailey, D, Humm, J, Todd-Pokropek, A, van Aswegen, A. Nuclear Medicine Physics. Vienna: International Atomic Energy Agency; 2016.
[30] Food and Agriculture Organization of the United Nations IAEA. International Basic Safety Standards for Protection Against Ionizing Radiation and for the Safety of Radiation Sources. IAEA Safety Series No. 115 1996. https://www.ilo.org/global/topics/safety-and-health-at-work/resources-library/publications/WCMS_152685/lang--en/index.htm (accessed July 28, 2020).
[31] Coenen HH, Gee AD, Adam M, Antoni G, Cutler CS, Fujibayashi Y, et al. Consensus nomenclature rules for radiopharmaceutical chemistry - Setting the record straight. Nucl Med Biol 2017;55:v–xi. https://doi.org/10.1016/j.nucmedbio.2017.09.004.
[32] Cyclotron Produced Radionuclides: Emerging Positron Emitters for Medical Applications: 64Cu and 124I 2016. https://www.iaea.org/publications/10791/cyclotron-produced-radionuclides-emerging-positron-emitters-for-medical-applications-64cu-and-124i (accessed July 28, 2020).
[33] TPC - Home n.d. http://www.turkupetcentre.net/petanalysis/ (accessed July 28, 2020).
[34] Cheng Y, Kiess AP, Herman JM, Pomper MG, Meltzer SJ, Abraham JM. Phosphorus-32, a Clinically Available Drug, Inhibits Cancer Growth by Inducing DNA Double-Strand Breakage. PLOS ONE 2015;10:e0128152. https://doi.org/10.1371/journal.pone.0128152.
[35] Committee on State of Molybdenum-99 Production and Utilization and Progress Toward Eliminating Use of Highly Enriched Uranium, Nuclear and Radiation Studies Board, Division on Earth and Life Studies, National Academies of Sciences, Engineering, and Medicine. Molybdenum-99 for Medical Imaging. Washington (DC): National Academies Press (US); 2016.
[36] Pillai AMR, Knapp FFR. Evolving Important Role of Lutetium-177 for Therapeutic Nuclear Medicine. Curr Radiopharm 2015;8:78–85. https://doi.org/10.2174/1874471008666150312155959.
[37] Production of Long Lived Parent Radionuclides for Generators: 68Ge, 82Sr, 90Sr and 188W 2019. https://www.iaea.org/publications/8268/production-of-long-lived-parent-radionuclides-for-generators-68ge-82sr-90sr-and-188w (accessed July 28, 2020).
[38] PET analysis 68Ga. Turku PET Centre n.d. http://www.turkupetcentre.net/petanalysis/analysis_68ga.html (accessed July 28, 2020).
[39] Yttrium-90 and Rhenium-188 Radiopharmaceuticals for Radionuclide Therapy 2016. https://www.iaea.org/publications/10560/yttrium-90-and-rhenium-188-radiopharmaceuticals-for-radionuclide-therapy (accessed July 28, 2020).
[40] Claesson-Welsh L. Vascular permeability—the essentials. Ups J Med Sci 2015;120:135–43. https://doi.org/10.3109/03009734.2015.1064501.
[41] Junghans RP, Anderson CL. The protection receptor for IgG catabolism is the beta2-microglobulin-containing neonatal intestinal transport receptor. Proc Natl Acad Sci U S A 1996;93:5512–6.
[42] Thurber GM, Weissleder R. A Systems Approach for Tumor Pharmacokinetics. PLOS ONE 2011;6:e24696. https://doi.org/10.1371/journal.pone.0024696.
[43] Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res 1987;47:3039–51.
[44] Hawkins BT, Davis TP. The blood-brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005;57:173–85. https://doi.org/10.1124/pr.57.2.4.
[45] Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 2001;46:3–26. https://doi.org/10.1016/s0169-409x(00)00129-0.
[46] Weber J, Haberkorn U, Mier W. Cancer Stratification by Molecular Imaging. Int J Mol Sci 2015;16:4918–46. https://doi.org/10.3390/ijms16034918.
[47] Mamede M, Higashi T, Kitaichi M, Ishizu K, Ishimori T, Nakamoto Y, et al. [18F]FDG uptake and PCNA, Glut-1, and Hexokinase-II expressions in cancers and inflammatory lesions of the lung. Neoplasia 2005;7:369–79. https://doi.org/10.1593/neo.04577.
[48] Mattes MJ, Griffiths GL, Diril H, Goldenberg DM, Ong GL, Shih LB. Processing of antibody-radioisotope conjugates after binding to the surface of tumor cells. Cancer 1994;73:787–93. https://doi.org/10.1002/1097-0142(19940201)73:3+<787::aid-cncr2820731307>3.0.co;2-5.
[49] Zechmann CM, Afshar-Oromieh A, Armor T, Stubbs JB, Mier W, Hadaschik B, et al. Radiation dosimetry and first therapy results with a 124I/131I-labeled small molecule (MIP-1095) targeting PSMA for prostate cancer therapy. European Journal of Nuclear Medicine and Molecular Imaging 2014;41:1280–1292. https://doi.org/10.1007/s00259-014-2713-y.
[50] de Jong M, Kwekkeboom D, Valkema R, Krenning EP. Radiolabelled peptides for tumour therapy: current status and future directions. Plenary lecture at the EANM 2002. Eur J Nucl Med Mol Imaging 2003;30:463–9. https://doi.org/10.1007/s00259-002-1107-8.
[51] Flux G, Bardies M, Monsieurs M, Savolainen S, Strands S-E, Lassmann M, et al. The impact of PET and SPECT on dosimetry for targeted radionuclide therapy. Z Med Phys 2006;16:47–59. https://doi.org/10.1078/0939-3889-00291.
[52] Berezhkovskiy LM. On the accuracy of estimation of basic pharmacokinetic parameters by the traditional noncompartmental equations and the prediction of the steady-state volume of distribution in obese patients based upon data derived from normal subjects. J Pharm Sci 2011;100:2482–97. https://doi.org/10.1002/jps.22444.
[53] Upton RN, Foster DJR, Abuhelwa AY. An introduction to physiologically-based pharmacokinetic models. Paediatr Anaesth 2016;26:1036–46. https://doi.org/10.1111/pan.12995.
[54] Stefanovski D, Moate PJ, Boston RC. WinSAAM: a windows-based compartmental modeling system. Metab Clin Exp 2003;52:1153–66. https://doi.org/10.1016/s0026-0495(03)00144-6.
[55] Lammertsma AA, Bench CJ, Hume SP, Osman S, Gunn K, Brooks DJ, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab 1996;16:42–52. https://doi.org/10.1097/00004647-199601000-00005.
[56] Logan J. A review of graphical methods for tracer studies and strategies to reduce bias. Nucl Med Biol 2003;30:833–44. https://doi.org/10.1016/s0969-8051(03)00114-8.
[57] Naganawa M, Gallezot J-D, Rossano S, Carson RE. Quantitative PET Imaging in Drug Development: Estimation of Target Occupancy. Bull Math Biol 2019;81:3508–41. https://doi.org/10.1007/s11538-017-0374-2.
[58] Bauer RJ, Guzy S, Ng C. A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples. AAPS J 2007;9:E60-83. https://doi.org/10.1208/aapsj0901007.
[59] Fang Y-HD, Fakhri GE, Becker JA, Alpert NM. Parametric imaging with Bayesian priors: A validation study with 11C-Altropane PET. NeuroImage 2012. https://doi.org/10.1016/j.neuroimage.2012.03.003.
[60] Statistical Significance and Biological Relevance. EFSA Journal 2011;9:2372. https://doi.org/10.2903/j.efsa.2011.2372.
[61] Scheff TJ. Decision rules, types of error, and their consequences in medical diagnosis. Behavioral Science 1963;8:97–107. https://doi.org/10.1002/bs.3830080202.
[62] Mandrekar JN. Receiver operating characteristic curve in diagnostic test assessment. J Thorac Oncol 2010;5:1315–6. https://doi.org/10.1097/JTO.0b013e3181ec173d.
[63] Kumar R, Indrayan A. Receiver operating characteristic (ROC) curve for medical researchers. Indian Pediatr 2011;48:277–87. https://doi.org/10.1007/s13312-011-0055-4.
[64] Stralen KJ van, Jager KJ, Zoccali C, Dekker FW. Agreement between methods. Kidney International 2008;74:1116–20. https://doi.org/10.1038/ki.2008.306.
[65] Gonzalez-Chica DA, Bastos JL, Duquia RP, Bonamigo RR, Martínez-Mesa J, Gonzalez-Chica DA, et al. Test of association: which one is the most appropriate for my study? Anais Brasileiros de Dermatologia 2015;90:523–8. https://doi.org/10.1590/abd1806-4841.20154289.
[66] Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977;33:159–74.
[67] Feinstein AR. P-values and confidence intervals: two sides of the same unsatisfactory coin. J Clin Epidemiol 1998;51:355–60. https://doi.org/10.1016/s0895-4356(97)00295-3.
[68] Roncali E, Cherry SR. Application of silicon photomultipliers to positron emission tomography. Ann Biomed Eng 2011;39:1358–77. https://doi.org/10.1007/s10439-011-0266-9.
[69] Sabet H, Bläckberg L, Uzun-Ozsahin D, El-Fakhri G. Novel laser-processed CsI:Tl detector for SPECT. Med Phys 2016;43:2630–8. https://doi.org/10.1118/1.4947294.
[70] Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, et al. A combined PET/CT scanner for clinical oncology. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2000;41:1369–79.
[71] Kincl V, Drozdová A, Vašina J, Panovský R, Kamínek M. Kadmium-zinek-telluridové SPECT kamery - nové perspektivy nukleární kardiologie. Cor et Vasa 2015;57:e214–8. https://doi.org/10.1016/j.crvasa.2015.01.001.
[72] Bocher M, Blevis IM, Tsukerman L, Shrem Y, Kovalski G, Volokh L. A fast cardiac gamma camera with dynamic SPECT capabilities: design, system validation and future potential. Eur J Nucl Med Mol Imaging 2010;37:1887–902. https://doi.org/10.1007/s00259-010-1488-z.
[73] Gambhir SS, Berman DS, Ziffer J, Nagler M, Sandler M, Patton J, et al. A novel high-sensitivity rapid-acquisition single-photon cardiac imaging camera. J Nucl Med 2009;50:635–43. https://doi.org/10.2967/jnumed.108.060020.
[74] Stam MK, Verwer EE, Booij J, Adriaanse SM, de Bruin CM, de Wit TC. Performance evaluation of a novel brain-dedicated SPECT system. EJNMMI Phys 2018;5:4. https://doi.org/10.1186/s40658-018-0203-1.
[75] Busca P, Occhipinti M, Trigilio P, Cozzi G, Fiorini C, Piemonte C, et al. Experimental Evaluation of a SiPM-Based Scintillation Detector for MR-Compatible SPECT Systems. IEEE Transactions on Nuclear Science 2015;62:2122–8. https://doi.org/10.1109/TNS.2015.2481184.
[76] Keidar Z, Raysberg I, Lugassi R, Frenkel A, Israel O. Novel Cadmium Zinc Telluride Based detector General Purpose Gamma Camera: Initial Evaluation and Comparison with a Standard Camera. J Nucl Med 2016;57:259–259.
[77] Abbaszadeh S, Gu Y, Reynolds PD, Levin CS. Characterization of a sub-assembly of 3D position sensitive cadmium zinc telluride detectors and electronics from a sub-millimeter resolution PET system. Phys Med Biol 2016;61:6733–53. https://doi.org/10.1088/0031-9155/61/18/6733.
[78] Frach T, Prescher G, Degenhardt C, de Gruyter R, Schmitz A, Ballizany R. The digital silicon photomultiplier — Principle of operation and intrinsic detector performance. 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), 2009, p. 1959–65. https://doi.org/10.1109/NSSMIC.2009.5402143.
[79] Fishburn MW, Charbon E. System Tradeoffs in Gamma-Ray Detection Utilizing SPAD Arrays and Scintillators. IEEE Transactions on Nuclear Science 2010;57:2549–57. https://doi.org/10.1109/TNS.2010.2064788.
[80] Mandai S, Charbon E. A 4 × 4 × 416 digital SiPM array with 192 TDCs for multiple high-resolution timestamp acquisition. J Inst 2013;8:P05024–P05024. https://doi.org/10.1088/1748-0221/8/05/P05024.
[81] Liu Z, Pizzichemi M, Auffray E, Lecoq P, Paganoni M. Performance study of Philips digital silicon photomultiplier coupled to scintillating crystals. J Inst 2016;11:P01017–P01017. https://doi.org/10.1088/1748-0221/11/01/P01017.
[82] Vandenberghe S, Mikhaylova E, D’Hoe E, Mollet P, Karp JS. Recent developments in time-of-flight PET. EJNMMI Physics 2016;3:3. https://doi.org/10.1186/s40658-016-0138-3.
[83] Schug D, Wehner J, Goldschmidt B, Lerche C, Dueppenbecker PM, Hallen P, et al. Data Processing for a High Resolution Preclinical PET Detector Based on Philips DPC Digital SiPMs. IEEE Transactions on Nuclear Science 2015;62:669–78. https://doi.org/10.1109/TNS.2015.2420578.
[84] Berg E, Roncali E, Kapusta M, Du J, Cherry SR. A combined time-of-flight and depth-of-interaction detector for total-body positron emission tomography. Med Phys 2016;43:939–50. https://doi.org/10.1118/1.4940355.
[85] Camarlinghi N, Belcari N, Cerello P, Sportelli G, Pennazio F, Zaccario E, et al. Evaluation of algorithms for photon depth of interaction estimation for the TRIMAGE PET component. EJNMMI Physics 2015;2:A13. https://doi.org/10.1186/2197-7364-2-S1-A13.
[86] Green MV, Ostrow HG, Seidel J, Pomper MG. Experimental Evaluation of Depth-of-Interaction Correction in a Small-Animal Positron Emission Tomography Scanner. Mol Imaging 2010;9:311–8.
[87] Lecoq P. Development of new scintillators for medical applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 2016;809:130–9. https://doi.org/10.1016/j.nima.2015.08.041.
[88] Hernlund E, Svedbom A, Ivergård M, Compston J, Cooper C, Stenmark J, et al. Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA). Arch Osteoporos 2013;8:136. https://doi.org/10.1007/s11657-013-0136-1.
[89] Statistik nach Themen - Eurostat n.d. https://ec.europa.eu/eurostat/de/data/browse-statistics-by-theme (accessed July 29, 2020).
[90] Kanis JA, Burlet N, Cooper C, Delmas PD, Reginster J-Y, Borgstrom F, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 2008;19:399–428. https://doi.org/10.1007/s00198-008-0560-z.
[91] Kälvesten J, Lui L-Y, Brismar T, Cummings S. Digital X-ray radiogrammetry in the study of osteoporotic fractures: Comparison to dual energy X-ray absorptiometry and FRAX. Bone 2016;86:30–5. https://doi.org/10.1016/j.bone.2016.02.011.
[92] Dual Energy X Ray Absorptiometry for Bone Mineral Density and Body Composition Assessment 2016. https://www.iaea.org/publications/8459/dual-energy-x-ray-absorptiometry-for-bone-mineral-density-and-body-composition-assessment (accessed July 29, 2020).
[93] Lewiecki EM, Binkley N, Morgan SL, Shuhart CR, Camargos BM, Carey JJ, et al. Best Practices for Dual-Energy X-ray Absorptiometry Measurement and Reporting: International Society for Clinical Densitometry Guidance. J Clin Densitom 2016;19:127–40. https://doi.org/10.1016/j.jocd.2016.03.003.
[94] Bonnick SL. Bone Densitometry for Technologists. 2nd ed. Humana Press; 2006. https://doi.org/10.1007/978-1-59259-992-9.
[95] Kim H-S, Yang S-O. Quality Control of DXA System and Precision Test of Radio-technologists. J Bone Metab 2014;21:2–7. https://doi.org/10.11005/jbm.2014.21.1.2.
[96] Genant HK, Wu CY, van Kuijk C, Nevitt MC. Vertebral fracture assessment using a semiquantitative technique. J Bone Miner Res 1993;8:1137–48. https://doi.org/10.1002/jbmr.5650080915.
[97] Carey JJ, Buehring B. Current imaging techniques in osteoporosis. Clin Exp Rheumatol 2018;36 Suppl 114:115–26.
[98] McCollough CH, Chen GH, Kalender W, Leng S, Samei E, Taguchi K, et al. Achieving Routine Submillisievert CT Scanning: Report from the Summit on Management of Radiation Dose in CT. Radiology 2012;264:567–80. https://doi.org/10.1148/radiol.12112265.
[99] Quality Assurance Programme for Computed Tomography: Diagnostic and Therapy Applications 2016. https://www.iaea.org/publications/8751/quality-assurance-programme-for-computed-tomography-diagnostic-and-therapy-applications (accessed July 29, 2020).
[100] Yang C-C, Yang B-H, Tu C-Y, Wu T-H, Liu S-H. Low-dose computed tomography scans with automatic exposure control for patients of different ages undergoing cardiac PET/CT and SPECT/CT. Nucl Med Commun 2017;38:546–55. https://doi.org/10.1097/MNM.0000000000000679.
[101] Grosser OS, Kupitz D, Ruf J, Czuczwara D, Steffen IG, Furth C, et al. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study. PLoS ONE 2015;10:e0138658. https://doi.org/10.1371/journal.pone.0138658.
[102] Sibille L, Chambert B, Alonso S, Barrau C, D’Estanque E, Tabaa YA, et al. Impact of the Adaptive Statistical Iterative Reconstruction Technique on Radiation Dose and Image Quality in Bone SPECT/CT. J Nucl Med 2016;57:1091–5. https://doi.org/10.2967/jnumed.115.164772.
[103] Gupta SK, Trethewey S, Brooker B, Rutherford N, Diffey J, Viswanathan S, et al. Radionuclide bone scan SPECT-CT: lowering the dose of CT significantly reduces radiation dose without impacting CT image quality. Am J Nucl Med Mol Imaging 2017;7:63–73.
[104] McCollough CH, Leng S, Yu L, Cody DD, Boone JM, McNitt-Gray MF. CT dose index and patient dose: they are not the same thing. Radiology 2011;259:311–6. https://doi.org/10.1148/radiol.11101800.
[105] Deak PD, Smal Y, Kalender WA. Multisection CT protocols: sex- and age-specific conversion factors used to determine effective dose from dose-length product. Radiology 2010;257:158–66. https://doi.org/10.1148/radiol.10100047.
[106] impactscan.org | ctdosimetry.xls - ImPACT’s ct dosimetry tool n.d. http://www.impactscan.org/ctdosimetry.htm (accessed July 29, 2020).
[107] Stamm G, Nagel HD. [CT-expo--a novel program for dose evaluation in CT]. Rofo 2002;174:1570–6. https://doi.org/10.1055/s-2002-35937.
[108] Ding A, Gao Y, Liu H, Caracappa PF, Long DJ, Bolch WE, et al. VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients. Phys Med Biol 2015;60:5601–25. https://doi.org/10.1088/0031-9155/60/14/5601.
[109] Keat N. CT scanner automatic exposure control systems 2005. /paper/CT-scanner-automatic-exposure-control-systems-Keat/bb368f0a19e5fd059790bf278dd406a2c381c8bf (accessed July 29, 2020).
[110] Lee CH, Goo JM, Ye HJ, Ye S-J, Park CM, Chun EJ, et al. Radiation dose modulation techniques in the multidetector CT era: from basics to practice. Radiographics 2008;28:1451–9. https://doi.org/10.1148/rg.285075075.
[111] Rampado O, Marchisio F, Izzo A, Garelli E, Bianchi CC, Gandini G, et al. Effective dose and image quality evaluations of an automatic CT tube current modulation system with an anthropomorphic phantom. European Journal of Radiology 2009;72:181–7. https://doi.org/10.1016/j.ejrad.2008.06.027.
[112] Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in X-ray CT. Phys Med 2012;28:94–108. https://doi.org/10.1016/j.ejmp.2012.01.003.
[113] Schindera ST, Odedra D, Raza SA, Kim TK, Jang H-J, Szucs-Farkas Z, et al. Iterative reconstruction algorithm for CT: can radiation dose be decreased while low-contrast detectability is preserved? Radiology 2013;269:511–8. https://doi.org/10.1148/radiol.13122349.
[114] Goenka AH, Herts BR, Obuchowski NA, Primak AN, Dong F, Karim W, et al. Effect of Reduced Radiation Exposure and Iterative Reconstruction on Detection of Low-Contrast Low-Attenuation Lesions in an Anthropomorphic Liver Phantom: An 18-Reader Study. Radiology 2014;272:154–63. https://doi.org/10.1148/radiol.14131928.
[115] Willemink MJ, de Jong PA, Leiner T, de Heer LM, Nievelstein RAJ, Budde RPJ, et al. Iterative reconstruction techniques for computed tomography Part 1: technical principles. Eur Radiol 2013;23:1623–31. https://doi.org/10.1007/s00330-012-2765-y.
[116] Kachelrieß M, Watzke O, Kalender WA. Generalized multi-dimensional adaptive filtering for conventional and spiral single-slice, multi-slice, and cone-beam CT. Medical Physics 2001;28:475–90. https://doi.org/10.1118/1.1358303.
[117] Xu J, Tsui BMW. Electronic Noise Modeling in Statistical Iterative Reconstruction. IEEE Trans Image Process 2009;18:1228–38. https://doi.org/10.1109/TIP.2009.2017139.
[118] Nuyts J, De Man B, Fessler JA, Zbijewski W, Beekman FJ. Modelling the physics in the iterative reconstruction for transmission computed tomography. Phys Med Biol 2013;58:R63-96. https://doi.org/10.1088/0031-9155/58/12/R63.
[119] Löve A, Olsson M-L, Siemund R, Stålhammar F, Björkman-Burtscher IM, Söderberg M. Six iterative reconstruction algorithms in brain CT: a phantom study on image quality at different radiation dose levels. Br J Radiol 2013;86. https://doi.org/10.1259/bjr.20130388.
[120] Miéville FA, Gudinchet F, Brunelle F, Bochud FO, Verdun FR. Iterative reconstruction methods in two different MDCT scanners: physical metrics and 4-alternative forced-choice detectability experiments--a phantom approach. Phys Med 2013;29:99–110. https://doi.org/10.1016/j.ejmp.2011.12.004.
[121] Yu H, Wang G. Compressed sensing based interior tomography. Phys Med Biol 2009;54:2791–805. https://doi.org/10.1088/0031-9155/54/9/014.
[122] Rampado O, Busso S, Garabello D, Marengo E, Valerio M, Capello S, et al. Aortic CT angiography dose reduction: investigation of optimal noise index and iterative algorithm strength in combination with low kV. Radiol Med 2016;121:291–300. https://doi.org/10.1007/s11547-015-0611-4.
[123] Abdoli M, Dierckx RAJO, Zaidi H. Metal artifact reduction strategies for improved attenuation correction in hybrid PET/CT imaging. Medical Physics 2012;39:3343–60. https://doi.org/10.1118/1.4709599.
[124] Mansfield P, Grannell PK. NMR “diffraction” in solids? J Phys C: Solid State Phys 1973;6:L422–L426. https://doi.org/10.1088/0022-3719/6/22/007.
[125] Lauterbur PC. Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance. Nature 1973;242:190–1. https://doi.org/10.1038/242190a0.
[126] Vandenberghe S, Marsden PK. PET-MRI: a review of challenges and solutions in the development of integrated multimodality imaging. Phys Med Biol 2015;60:R115-154. https://doi.org/10.1088/0031-9155/60/4/R115.
[127] Lang TF, Hasegawa BH, Liew SC, Brown JK, Blankespoor SC, Reilly SM, et al. Description of a prototype emission-transmission computed tomography imaging system. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 1992;33:1881–7.
[128] Kinahan PE, Townsend DW, Beyer T, Sashin D. Attenuation correction for a combined 3D PET/CT scanner. Medical Physics 1998;25:2046–2053. https://doi.org/10.1118/1.598392.
[129] Townsend DW, Beyer T. A combined PET/CT scanner: the path to true image fusion. The British Journal of Radiology 2002;75:S24–S30. https://doi.org/10.1259/bjr.75.suppl_9.750024.
[130] Ljungberg M, Pretorius PH. SPECT/CT: an update on technological developments and clinical applications. Br J Radiol 2018;91:20160402. https://doi.org/10.1259/bjr.20160402.
[131] Seo Y, Mari C, Hasegawa BH. Technological development and advances in single-photon emission computed tomography/computed tomography. Semin Nucl Med 2008;38:177–98. https://doi.org/10.1053/j.semnuclmed.2008.01.001.
[132] Hasegawa BH, Wong KH, Iwata K, Barber WC, Hwang AB, Sakdinawat AE, et al. Dual-modality imaging of cancer with SPECT/CT. Technol Cancer Res Treat 2002;1:449–58. https://doi.org/10.1177/153303460200100605.
[133] Abdelhafez Y, Khalil M, Roshdy E, Diab WA, Eltoni L. Hybrid SPECT/CT Helps Characterization and Localization of a Dual Thyroid Ectopia. Clinical Nuclear Medicine 2017;42:855–856. https://doi.org/10.1097/RLU.0000000000001824.
[134] Simanek M, Koranda P. The benefit of personalized hybrid SPECT/CT pulmonary imaging. Am J Nucl Med Mol Imaging 2016;6:215–22.
[135] Ciarmiello A, Giovannini E, Meniconi M, Cuccurullo V, Gaeta MC. Hybrid SPECT/CT imaging in neurology. Curr Radiopharm 2014;7:5–11. https://doi.org/10.2174/1874471007666140821152401.
[136] Even-Sapir E, Keidar Z, Bar-Shalom R. Hybrid Imaging (SPECT/CT and PET/CT)—Improving the Diagnostic Accuracy of Functional/Metabolic and Anatomic Imaging. Seminars in Nuclear Medicine 2009;39:264–75. https://doi.org/10.1053/j.semnuclmed.2009.03.004.
[137] Delbeke D, Schöder H, Martin WH, Wahl RL. Hybrid imaging (SPECT/CT and PET/CT): improving therapeutic decisions. Semin Nucl Med 2009;39:308–40. https://doi.org/10.1053/j.semnuclmed.2009.03.002.
[138] Chowdhury FU, Scarsbrook AF. The role of hybrid SPECT-CT in oncology: current and emerging clinical applications. Clinical Radiology 2008;63:241–51. https://doi.org/10.1016/j.crad.2007.11.008.
[139] Schillaci O. Hybrid SPECT/CT: a new era for SPECT imaging? Eur J Nucl Med Mol Imaging 2005;32:521–4. https://doi.org/10.1007/s00259-005-1760-9.
[140] Gnanasegaran G, Cook G, Adamson K, Fogelman I. Patterns, variants, artifacts, and pitfalls in conventional radionuclide bone imaging and SPECT/CT. Semin Nucl Med 2009;39:380–95. https://doi.org/10.1053/j.semnuclmed.2009.07.003.
[141] Hutton BF, Buvat I, Beekman FJ. Review and current status of SPECT scatter correction. Phys Med Biol 2011;56:R85-112. https://doi.org/10.1088/0031-9155/56/14/R01.
[142] Ljungberg M, Sjögreen Gleisner K. Personalized Dosimetry for Radionuclide Therapy Using Molecular Imaging Tools. Biomedicines 2016;4. https://doi.org/10.3390/biomedicines4040025.
[143] Ljungberg M, Gleisner KS. Hybrid Imaging for Patient-Specific Dosimetry in Radionuclide Therapy. Diagnostics (Basel) 2015;5:296–317. https://doi.org/10.3390/diagnostics5030296.
[144] Sjögreen-Gleisner K, Rueckert D, Ljungberg M. Registration of serial SPECT/CT images for three-dimensional dosimetry in radionuclide therapy. Phys Med Biol 2009;54:6181–6200. https://doi.org/10.1088/0031-9155/54/20/010.
[145] Sjögreen K, Ljungberg M, Strand S-E. An Activity Quantification Method Based on Registration of CT and Whole-Body Scintillation Camera Images, with Application to 131I. J Nucl Med 2002;43:972–82.
[146] Minarik D, Sjögreen K, Ljungberg M. A New Method to Obtain Transmission Images for Planar Whole-Body Activity Quantification. Cancer Biotherapy and Radiopharmaceuticals 2005;20:72–6. https://doi.org/10.1089/cbr.2005.20.72.
[147] Gleisner KS, Ljungberg M. Patient-specific whole-body attenuation correction maps from a CT system for conjugate-view-based activity quantification: method development and evaluation. Cancer Biother Radiopharm 2012;27:652–64. https://doi.org/10.1089/cbr.2011.1082.
[148] Goetze S, Wahl RL. Prevalence of misregistration between SPECT and CT for attenuation-corrected myocardial perfusion SPECT. J Nucl Cardiol 2007;14:200–6. https://doi.org/10.1016/j.nuclcard.2006.12.325.
[149] Schindera ST, Tock I, Marin D, Nelson RC, Raupach R, Hagemeister M, et al. Effect of Beam Hardening on Arterial Enhancement in Thoracoabdominal CT Angiography with Increasing Patient Size: An in Vitro and in Vivo Study. Radiology 2010;256:528–35. https://doi.org/10.1148/radiol.10092086.
[150] Mattsson S, Söderberg M. Radiation dose management in CT, SPECT/CT and PET/CT techniques. Radiat Prot Dosimetry 2011;147:13–21. https://doi.org/10.1093/rpd/ncr261.
[151] Townsend DW, Cherry SR. Combining anatomy and function: the path to true image fusion. Eur Radiol 2001;11:1968–74. https://doi.org/10.1007/s003300101007.
[152] Halpern BS, Dahlbom M, Quon A, Schiepers C, Waldherr C, Silverman DH, et al. Impact of patient weight and emission scan duration on PET/CT image quality and lesion detectability. J Nucl Med 2004;45:797–801.
[153] Lartizien C, Kinahan PE, Comtat C. A lesion detection observer study comparing 2-dimensional versus fully 3-dimensional whole-body PET imaging protocols. J Nucl Med 2004;45:714–23.
[154] Lewellen TK. Recent developments in PET detector technology. Phys Med Biol 2008;53:R287-317. https://doi.org/10.1088/0031-9155/53/17/R01.
[155] Humm JL, Rosenfeld A, Del Guerra A. From PET detectors to PET scanners. Eur J Nucl Med Mol Imaging 2003;30:1574–97. https://doi.org/10.1007/s00259-003-1266-2.
[156] Conti M, Bendriem B, Casey M, Chen M, Kehren F, Michel C, et al. First experimental results of time-of-flight reconstruction on an LSO PET scanner. Phys Med Biol 2005;50:4507–4526. https://doi.org/10.1088/0031-9155/50/19/006.
[157] Lonneux M, Borbath I, Bol A, Coppens A, Sibomana M, Bausart R, et al. Attenuation correction in whole-body FDG oncological studies: the role of statistical reconstruction. Eur J Nucl Med 1999;26:591–8. https://doi.org/10.1007/s002590050426.
[158] Brendle C, Kupferschläger J, Nikolaou K, la Fougère C, Gatidis S, Pfannenberg C. Is the standard uptake value (SUV) appropriate for quantification in clinical PET imaging? – Variability induced by different SUV measurements and varying reconstruction methods. European Journal of Radiology 2015;84:158–62. https://doi.org/10.1016/j.ejrad.2014.10.018.
[159] van der Vos CS, Koopman D, Rijnsdorp S, Arends AJ, Boellaard R, van Dalen JA, et al. Quantification, improvement, and harmonization of small lesion detection with state-of-the-art PET. Eur J Nucl Med Mol Imaging 2017;44:4–16. https://doi.org/10.1007/s00259-017-3727-z.
[160] Schatka I, Weiberg D, Reichelt S, Owsianski-Hille N, Derlin T, Berding G, et al. A randomized, double-blind, crossover comparison of novel continuous bed motion versus traditional bed position whole-body PET/CT imaging. Eur J Nucl Med Mol Imaging 2016;43:711–7. https://doi.org/10.1007/s00259-015-3226-z.
[161] Badawi RD, Shi H, Hu P, Chen S, Xu T, Price PM, et al. First Human Imaging Studies with the Explorer Total-Body Pet Scanner. J Nucl Med 2019:jnumed.119.226498. https://doi.org/10.2967/jnumed.119.226498.
[162] Vandenberghe S, Moskal P, Karp JS. State of the art in total body PET. EJNMMI Physics 2020;7:35. https://doi.org/10.1186/s40658-020-00290-2.
[163] Pichler BJ, Swann BK, Rochelle J, Nutt RE, Cherry SR, Siegel SB. Lutetium oxyorthosilicate block detector readout by avalanche photodiode arrays for high resolution animal PET. Physics in Medicine and Biology 2004;49:4305–19.
[164] Pichler BJ, Judenhofer MS, Catana C, Walton JH, Kneilling M, Nutt RE, et al. Performance test of an LSO-APD detector in a 7-T MRI scanner for simultaneous PET/MRI. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2006;47:639–47.
[165] Pichler BJ, Wehrl HF, Kolb A, Judenhofer MS. Positron Emission Tomography/Magnetic Resonance Imaging: The Next Generation of Multimodality Imaging? Seminars in Nuclear Medicine 2008;38:199–208. https://doi.org/10.1053/j.semnuclmed.2008.02.001.
[166] Pichler BJ, Kolb A, Nagele T, Schlemmer H-P. PET/MRI: Paving the Way for the Next Generation of Clinical Multimodality Imaging Applications. Journal of Nuclear Medicine 2010;51:333–336. https://doi.org/10.2967/jnumed.109.061853.
[167] Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, et al. Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 2008;14:459–65. https://doi.org/10.1038/nm1700.
[168] Judenhofer MS, Catana C, Swann BK, Siegel SB, Jung W-I, Nutt RE, et al. PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet. Radiology 2007;244:807–14. https://doi.org/10.1148/radiol.2443061756.
[169] Ziegler SI, Pichler BJ, Boening G, Rafecas M, Pimpl W, Lorenz E, et al. A prototype high-resolution animal positron tomograph with avalanche photodiode arrays and LSO crystals. European Journal of Nuclear Medicine 2001;28:136–143. https://doi.org/10.1007/s002590000438.
[170] Schlemmer H-PW, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, et al. Simultaneous MR/PET Imaging of the Human Brain: Feasibility Study. Radiology 2008;248:1028–1035. https://doi.org/10.1148/radiol.2483071927.
[171] Kolb A, Wehrl HF, Hofmann M, Judenhofer MS, Eriksson L, Ladebeck R, et al. Technical performance evaluation of a human brain PET/MRI system. European Radiology 2012;22:1776–1788. https://doi.org/10.1007/s00330-012-2415-4.
[172] Bailey DL, Antoch G, Bartenstein P, Barthel H, Beer AJ, Bisdas S, et al. Combined PET/MR: The Real Work Has Just Started. Summary Report of the Third International Workshop on PET/MR Imaging; February 17-21, 2014, Tübingen, Germany. Mol Imaging Biol 2015;17:297–312. https://doi.org/10.1007/s11307-014-0818-0.
[173] Bailey DL, Pichler BJ, Gückel B, Barthel H, Beer AJ, Bremerich J, et al. Combined PET/MRI: Multi-modality Multi-parametric Imaging Is Here: Summary Report of the 4th International Workshop on PET/MR Imaging; February 23-27, 2015, Tübingen, Germany. Mol Imaging Biol 2015;17:595–608. https://doi.org/10.1007/s11307-015-0886-9.
[174] Bailey DL, Pichler BJ, Gückel B, Barthel H, Beer AJ, Botnar R, et al. Combined PET/MRI: from Status Quo to Status Go. Summary Report of the Fifth International Workshop on PET/MR Imaging; February 15-19, 2016; Tübingen, Germany. Molecular Imaging and Biology : MIB : The Official Publication of the Academy of Molecular Imaging 2016;18:637–50. https://doi.org/10.1007/s11307-016-0993-2.
[175] Bailey DL, Pichler BJ, Gückel B, Antoch G, Barthel H, Bhujwalla ZM, et al. Combined PET/MRI: Global Warming—Summary Report of the 6th International Workshop on PET/MRI, March 27–29, 2017, Tübingen, Germany. Mol Imaging Biol 2018;20:4–20. https://doi.org/10.1007/s11307-017-1123-5.
[176] Veit-Haibach P, Kuhn FP, Wiesinger F, Delso G, von Schulthess G. PET–MR imaging using a tri-modality PET/CT–MR system with a dedicated shuttle in clinical routine. Magnetic Resonance Materials in Physics, Biology and Medicine 2013;26:25–35. https://doi.org/10.1007/s10334-012-0344-5.
[177] von Schulthess GK. Why buy a PET/MR for high end research? Journal of Magnetic Resonance Imaging 2014;40:283–284. https://doi.org/10.1002/jmri.24426.
[178] Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. European Journal of Nuclear Medicine and Molecular Imaging 2015;42:328–54. https://doi.org/10.1007/s00259-014-2961-x.
[179] Rausch I, Rischka L, Ladefoged CN, Furtner J, Fenchel M, Hahn A, et al. PET/MRI for Oncologic Brain Imaging: A Comparison of Standard MR-Based Attenuation Corrections with a Model-Based Approach for the Siemens mMR PET/MR System. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2017;58:1519–1525. https://doi.org/10.2967/jnumed.116.186148.
[180] Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance Measurements of the Siemens mMR Integrated Whole-Body PET/MR Scanner. Journal of Nuclear Medicine 2011;52:1914–1922. https://doi.org/10.2967/jnumed.111.092726.
[181] Parker JA, Christian P, Jadvar H, Sattler B, Wallis JW. The SNMMI and EANM Practice Guideline for Tele-Nuclear Medicine 2.0. Journal of Nuclear Medicine Technology 2014;42:15–19. https://doi.org/10.2967/jnmt.113.133231.
[182] Boellaard R, Rausch I, Beyer T, Delso G, Yaqub M, Quick HH, et al. Quality control for quantitative multicenter whole-body PET/MR studies: A NEMA image quality phantom study with three current PET/MR systems. Medical Physics 2015;42:5961–5969. https://doi.org/10.1118/1.4930962.
[183] Seifert S, van der Lei G, van Dam HT, Schaart DR. First characterization of a digital SiPM based time-of-flight PET detector with 1 mm spatial resolution. Physics in Medicine and Biology 2013;58:3061–3074. https://doi.org/10.1088/0031-9155/58/9/3061.
[184] Lecomte R. Novel detector technology for clinical PET. Eur J Nucl Med Mol Imaging 2009;36 Suppl 1:S69-85. https://doi.org/10.1007/s00259-008-1054-0.
[185] Burger C, Goerres G, Schoenes S, Buck A, Lonn A, von Schulthess G. PET attenuation coefficients from CT images: experimental evaluation of the transformation of CT into PET 511-keV attenuation coefficients. European Journal of Nuclear Medicine and Molecular Imaging 2002;29:922–927. https://doi.org/10.1007/s00259-002-0796-3.
[186] Carney JPJ, Townsend DW, Rappoport V, Bendriem B. Method for transforming CT images for attenuation correction in PET/CT imaging. Medical Physics 2006;33:976–983. https://doi.org/10.1118/1.2174132.
[187] Teimourian B, Ay MR, Zafarghandi MS, Ghafarian P, Ghadiri H, Zaidi H. A novel energy mapping approach for CT-based attenuation correction in PET. Medical Physics 2012;39:2078–2089. https://doi.org/10.1118/1.3694108.
[188] Sekine T, Buck A, Delso G, ter Voert EEGW, Huellner M, Veit-Haibach P, et al. Evaluation of Atlas-Based Attenuation Correction for Integrated PET/MR in Human Brain: Application of a Head Atlas and Comparison to True CT-Based Attenuation Correction. Journal of Nuclear Medicine 2016;57:215–220. https://doi.org/10.2967/jnumed.115.159228.
[189] Yang J, Jian Y, Jenkins N, Behr SC, Hope TA, Larson PEZ, et al. Quantitative Evaluation of Atlas-based Attenuation Correction for Brain PET in an Integrated Time-of-Flight PET/MR Imaging System. Radiology 2017;284:169–179. https://doi.org/10.1148/radiol.2017161603.
[190] Burgos N, Cardoso MJ, Thielemans K, Modat M, Dickson J, Schott JM, et al. Multi-contrast attenuation map synthesis for PET/MR scanners: assessment on FDG and Florbetapir PET tracers. European Journal of Nuclear Medicine and Molecular Imaging 2015;42:1447–58. https://doi.org/10.1007/s00259-015-3082-x.
[191] Paulus DH, Quick HH, Geppert C, Fenchel M, Zhan Y, Hermosillo G, et al. Whole-Body PET/MR Imaging: Quantitative Evaluation of a Novel Model-Based MR Attenuation Correction Method Including Bone. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2015;56:1061–6. https://doi.org/10.2967/jnumed.115.156000.
[192] Ladefoged CN, Benoit D, Law I, Holm S, Kj\a er A, Højgaard L, et al. Region specific optimization of continuous linear attenuation coefficients based on UTE (RESOLUTE): application to PET/MR brain imaging. Physics in Medicine and Biology 2015;60:8047–8065. https://doi.org/10.1088/0031-9155/60/20/8047.
[193] Ladefoged CN, Law I, Anazodo U, St. Lawrence K, Izquierdo-Garcia D, Catana C, et al. A multi-centre evaluation of eleven clinically feasible brain PET/MRI attenuation correction techniques using a large cohort of patients. NeuroImage 2017;147:346–359. https://doi.org/10.1016/J.NEUROIMAGE.2016.12.010.
[194] Ladefoged CN, Andersen FL, Kj\a er A, Højgaard L, Law I. RESOLUTE PET/MRI Attenuation Correction for O-(2-18F-fluoroethyl)-L-tyrosine (FET) in Brain Tumor Patients with Metal Implants. Frontiers in Neuroscience 2017;11:453. https://doi.org/10.3389/fnins.2017.00453.
[195] Han X. MR-based synthetic CT generation using a deep convolutional neural network method. Med Phys 2017;44:1408–19. https://doi.org/10.1002/mp.12155.
[196] Leynes AP, Yang J, Wiesinger F, Kaushik SS, Shanbhag DD, Seo Y, et al. Zero-Echo-Time and Dixon Deep Pseudo-CT (ZeDD CT): Direct Generation of Pseudo-CT Images for Pelvic PET/MRI Attenuation Correction Using Deep Convolutional Neural Networks with Multiparametric MRI. J Nucl Med 2018;59:852–8. https://doi.org/10.2967/jnumed.117.198051.
[197] Gong K, Yang J, Kim K, Fakhri GE, Seo Y, Li Q. Attenuation Correction for Brain PET Imaging Using Deep Neural Network Based on Dixon and ZTE MR Images. Phys Med Biol 2018;63:125011. https://doi.org/10.1088/1361-6560/aac763.
[198] Ladefoged CN, Marner L, Hindsholm A, Law I, Højgaard L, Andersen FL. Deep Learning Based Attenuation Correction of PET/MRI in Pediatric Brain Tumor Patients: Evaluation in a Clinical Setting. Front Neurosci 2018;12:1005. https://doi.org/10.3389/fnins.2018.01005.
[199] Ziegler S, Braun H, Ritt P, Hocke C, Kuwert T, Quick HH. Systematic evaluation of phantom fluids for simultaneous PET/MR hybrid imaging. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2013;54:1464–71. https://doi.org/10.2967/jnumed.112.116376.
[200] Boellaard R, Hofman MBM, Hoekstra OS, Lammertsma AA. Accurate PET/MR Quantification Using Time of Flight MLAA Image Reconstruction. Molecular Imaging and Biology 2014;16:469–477. https://doi.org/10.1007/s11307-013-0716-x.
[201] Beyer T, Lassen ML, Boellaard R, Delso G, Yaqub M, Sattler B, et al. Investigating the state-of-the-art in whole-body MR-based attenuation correction: an intra-individual, inter-system, inventory study on three clinical PET/MR systems. Magnetic Resonance Materials in Physics, Biology and Medicine 2016;29:75–87. https://doi.org/10.1007/s10334-015-0505-4.
[202] Grant AM, Deller TW, Khalighi MM, Maramraju SH, Delso G, Levin CS. NEMA NU 2-2012 performance studies for the SiPM-based ToF-PET component of the GE SIGNA PET/MR system. Medical Physics 2016;43:2334–2343. https://doi.org/10.1118/1.4945416.
[203] Nuyts J, Dupont P, Stroobants S, Benninck R, Mortelmans L, Suetens P. Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission sinograms. IEEE Transactions on Medical Imaging 1999;18:393–403. https://doi.org/10.1109/42.774167.
[204] Topol EJ. High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine 2019;25:44–56. https://doi.org/10.1038/s41591-018-0300-7.
[205] Cook GJR, Goh V. What can artificial intelligence teach us about the molecular mechanisms underlying disease? Eur J Nucl Med Mol Imaging 2019;46:2715–21. https://doi.org/10.1007/s00259-019-04370-z.
[206] Harrer S, Shah P, Antony B, Hu J. Artificial Intelligence for Clinical Trial Design. Trends in Pharmacological Sciences 2019;40:577–91. https://doi.org/10.1016/j.tips.2019.05.005.
[207] Dilsizian SE, Siegel EL. Artificial Intelligence in Medicine and Cardiac Imaging: Harnessing Big Data and Advanced Computing to Provide Personalized Medical Diagnosis and Treatment. Curr Cardiol Rep 2013;16:441. https://doi.org/10.1007/s11886-013-0441-8.
[208] Cal-Gonzalez J, Rausch I, Shiyam Sundar LK, Lassen ML, Muzik O, Moser E, et al. Hybrid Imaging: Instrumentation and Data Processing. Front Phys 2018;6. https://doi.org/10.3389/fphy.2018.00047.
[209] Wang F, Casalino LP, Khullar D. Deep Learning in Medicine-Promise, Progress, and Challenges. JAMA Intern Med 2019;179:293–4. https://doi.org/10.1001/jamainternmed.2018.7117.
[210] Kotsiantis SB. Supervised Machine Learning: A Review of Classification Techniques n.d.:20.
[211] Olson RS, Cava WL, Mustahsan Z, Varik A, Moore JH. Data-driven advice for applying machine learning to bioinformatics problems. Biocomputing 2018, WORLD SCIENTIFIC; 2017, p. 192–203. https://doi.org/10.1142/9789813235533_0018.
[212] Tarca AL, Carey VJ, Chen X, Romero R, Drăghici S. Machine Learning and Its Applications to Biology. PLOS Computational Biology 2007;3:e116. https://doi.org/10.1371/journal.pcbi.0030116.
[213] Maaten L van der, Hinton G. Visualizing Data using t-SNE. Journal of Machine Learning Research 2008;9:2579–605.
[214] Gao Y, Liu Y, Wang Y, Shi Z, Yu J. A Universal Intensity Standardization Method Based on a Many-to-One Weak-Paired Cycle Generative Adversarial Network for Magnetic Resonance Images. IEEE Transactions on Medical Imaging 2019;38:2059–69. https://doi.org/10.1109/TMI.2019.2894692.
[215] Frid-Adar M, Klang E, Amitai M, Goldberger J, Greenspan H. Synthetic data augmentation using GAN for improved liver lesion classification. 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), 2018, p. 289–93. https://doi.org/10.1109/ISBI.2018.8363576.
[216] Chen M, Shi X, Zhang Y, Wu D, Guizani M. Deep Features Learning for Medical Image Analysis with Convolutional Autoencoder Neural Network. IEEE Transactions on Big Data 2017:1–1. https://doi.org/10.1109/TBDATA.2017.2717439.
[217] Visvikis D, Cheze Le Rest C, Jaouen V, Hatt M. Artificial intelligence, machine (deep) learning and radio(geno)mics: definitions and nuclear medicine imaging applications. Eur J Nucl Med Mol Imaging 2019;46:2630–7. https://doi.org/10.1007/s00259-019-04373-w.
[218] Hatt M, Tixier F, Visvikis D, Rest CCL. Radiomics in PET/CT: More Than Meets the Eye? J Nucl Med 2017;58:365–6. https://doi.org/10.2967/jnumed.116.184655.
[219] Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nature Reviews Clinical Oncology 2017;14:749–762. https://doi.org/10.1038/nrclinonc.2017.141.
[220] Kratz J, Strasser C. Data publication consensus and controversies. F1000Res 2014;3:94. https://doi.org/10.12688/f1000research.3979.3.
[221] Kalendralis P, Shi Z, Traverso A, Choudhury A, Sloep M, Zhovannik I, et al. FAIR-compliant clinical, radiomics and DICOM metadata of RIDER, interobserver, Lung1 and head-Neck1 TCIA collections. Med Phys 2020. https://doi.org/10.1002/mp.14322.
[222] Panch T, Mattie H, Celi LA. The “inconvenient truth” about AI in healthcare. Npj Digital Medicine 2019;2:1–3. https://doi.org/10.1038/s41746-019-0155-4.
[223] Zhang L, Yang H, Jiang Z. Imbalanced biomedical data classification using self-adaptive multilayer ELM combined with dynamic GAN. BioMedical Engineering OnLine 2018;17:181. https://doi.org/10.1186/s12938-018-0604-3.
[224] Yu H, Hong S, Yang X, Ni J, Dan Y, Qin B. Recognition of Multiple Imbalanced Cancer Types Based on DNA Microarray Data Using Ensemble Classifiers. BioMed Research International 2013;2013:e239628. https://doi.org/10.1155/2013/239628.
[225] Shorten C, Khoshgoftaar TM. A survey on Image Data Augmentation for Deep Learning. Journal of Big Data 2019;6:60. https://doi.org/10.1186/s40537-019-0197-0.
[226] Wibmer AG, Hricak H, Ulaner GA, Weber W. Trends in oncologic hybrid imaging. European Journal of Hybrid Imaging 2018;2:1. https://doi.org/10.1186/s41824-017-0019-6.
[227] Papp L, Spielvogel CP, Rausch I, Hacker M, Beyer T. Personalizing Medicine Through Hybrid Imaging and Medical Big Data Analysis. Front Phys 2018;6. https://doi.org/10.3389/fphy.2018.00051.
[228] Kesner A, Koo P. A consideration for changing our PET data saving practices: a cost/benefit analysis. J Nucl Med 2016;57:1912–1912.
[229] Milchenko M, Marcus D. Obscuring Surface Anatomy in Volumetric Imaging Data. Neuroinform 2013;11:65–75. https://doi.org/10.1007/s12021-012-9160-3.
[230] Allen B, Seltzer SE, Langlotz CP, Dreyer KP, Summers RM, Petrick N, et al. A Road Map for Translational Research on Artificial Intelligence in Medical Imaging: From the 2018 National Institutes of Health/RSNA/ACR/The Academy Workshop. Journal of the American College of Radiology 2019;16:1179–89. https://doi.org/10.1016/j.jacr.2019.04.014.
[231] Avanzo M, Stancanello J, Naqa IE. Beyond imaging: The promise of radiomics. Physica Medica: European Journal of Medical Physics 2017;38:122–39. https://doi.org/10.1016/j.ejmp.2017.05.071.
[232] Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A survey on deep learning in medical image analysis. Medical Image Analysis 2017;42:60–88. https://doi.org/10.1016/j.media.2017.07.005.
[233] Zhang C, Bengio S, Hardt M, Recht B, Vinyals O. Understanding deep learning requires rethinking generalization. ArXiv:161103530 [Cs] 2017.
[234] Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation 1997;1:67–82. https://doi.org/10.1109/4235.585893.
[235] Yu-Chi Ho, Pepyne DL. Simple explanation of the no free lunch theorem of optimization. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228), vol. 5, 2001, p. 4409–14 vol.5. https://doi.org/10.1109/CDC.2001.980896.
[236] Mohseni S, Zarei N, Ragan ED. A Multidisciplinary Survey and Framework for Design and Evaluation of Explainable AI Systems. ArXiv:181111839 [Cs] 2020.
[237] Li T, Tang W, Zhang L. Monte Carlo cross-validation analysis screens pathway cross-talk associated with Parkinson’s disease. Neurol Sci 2016;37:1327–33. https://doi.org/10.1007/s10072-016-2595-9.
[238] Sollini M, Antunovic L, Chiti A, Kirienko M. Towards clinical application of image mining: a systematic review on artificial intelligence and radiomics. Eur J Nucl Med Mol Imaging 2019;46:2656–72. https://doi.org/10.1007/s00259-019-04372-x.
[239] Hatt M, Lucia F, Schick U, Visvikis D. Multicentric validation of radiomics findings: challenges and opportunities. EBioMedicine 2019;47:20–1. https://doi.org/10.1016/j.ebiom.2019.08.054.
[240] Park SH, Han K. Methodologic Guide for Evaluating Clinical Performance and Effect of Artificial Intelligence Technology for Medical Diagnosis and Prediction. Radiology 2018;286:800–9. https://doi.org/10.1148/radiol.2017171920.
[241] Rudin C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence 2019;1:206–15. https://doi.org/10.1038/s42256-019-0048-x.
[242] Nensa F, Demircioglu A, Rischpler C. Artificial Intelligence in Nuclear Medicine. J Nucl Med 2019;60:29S-37S. https://doi.org/10.2967/jnumed.118.220590.
[243] Zaharchuk G, Gong E, Wintermark M, Rubin D, Langlotz CP. Deep Learning in Neuroradiology. AJNR Am J Neuroradiol 2018;39:1776–84. https://doi.org/10.3174/ajnr.A5543.
[244] Catana C. The Dawn of a New Era in Low-Dose PET Imaging. Radiology 2019;290:657–8. https://doi.org/10.1148/radiol.2018182573.
[245] Guo J, Gong E, Fan AP, Goubran M, Khalighi MM, Zaharchuk G. Predicting 15O-Water PET cerebral blood flow maps from multi-contrast MRI using a deep convolutional neural network with evaluation of training cohort bias: Journal of Cerebral Blood Flow & Metabolism 2019. https://doi.org/10.1177/0271678X19888123.
[246] Wei W, Poirion E, Bodini B, Durrleman S, Ayache N, Stankoff B, et al. Learning Myelin Content in Multiple Sclerosis from Multimodal MRI through Adversarial Training. ArXiv:180408039 [Cs] 2018;11072:514–22. https://doi.org/10.1007/978-3-030-00931-1_59.
[247] Hemmen HV, Massa H, Hurley S, Cho S, Bradshaw T, McMillan A. A deep learning-based approach for direct whole-body PET attenuation correction. J Nucl Med 2019;60:569–569.
[248] Hainc N, Federau C, Stieltjes B, Blatow M, Bink A, Stippich C. The Bright, Artificial Intelligence-Augmented Future of Neuroimaging Reading. Front Neurol 2017;8. https://doi.org/10.3389/fneur.2017.00489.
[249] Menze BH, Jakab A, Bauer S, Kalpathy-Cramer J, Farahani K, Kirby J, et al. The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Transactions on Medical Imaging 2015;34:1993–2024. https://doi.org/10.1109/TMI.2014.2377694.
[250] Armato SG, McLennan G, Bidaut L, McNitt-Gray MF, Meyer CR, Reeves AP, et al. The Lung Image Database Consortium (LIDC) and Image Database Resource Initiative (IDRI): a completed reference database of lung nodules on CT scans. Med Phys 2011;38:915–31. https://doi.org/10.1118/1.3528204.
[251] Maier O, Menze BH, von der Gablentz J, Ḧani L, Heinrich MP, Liebrand M, et al. ISLES 2015 - A public evaluation benchmark for ischemic stroke lesion segmentation from multispectral MRI. Med Image Anal 2017;35:250–69. https://doi.org/10.1016/j.media.2016.07.009.
[252] Kistler M, Bonaretti S, Pfahrer M, Niklaus R, Büchler P. The Virtual Skeleton Database: An Open Access Repository for Biomedical Research and Collaboration. J Med Internet Res 2013;15. https://doi.org/10.2196/jmir.2930.
[253] Kim J, Lee B. Identification of Alzheimer’s disease and mild cognitive impairment using multimodal sparse hierarchical extreme learning machine. Human Brain Mapping 2018;39:3728–41. https://doi.org/10.1002/hbm.24207.
[254] Katako A, Shelton P, Goertzen AL, Levin D, Bybel B, Aljuaid M, et al. Machine learning identified an Alzheimer’s disease-related FDG-PET pattern which is also expressed in Lewy body dementia and Parkinson’s disease dementia. Scientific Reports 2018;8:13236. https://doi.org/10.1038/s41598-018-31653-6.
[255] Liu M, Cheng D, Yan W, Alzheimer’s Disease Neuroimaging Initiative. Classification of Alzheimer’s Disease by Combination of Convolutional and Recurrent Neural Networks Using FDG-PET Images. Front Neuroinform 2018;12:35. https://doi.org/10.3389/fninf.2018.00035.
[256] Ding Y, Sohn JH, Kawczynski MG, Trivedi H, Harnish R, Jenkins NW, et al. A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using 18F-FDG PET of the Brain. Radiology 2019;290:456–64. https://doi.org/10.1148/radiol.2018180958.
[257] Kim DH, Wit H, Thurston M. Artificial intelligence in the diagnosis of Parkinson’s disease from ioflupane-123 single-photon emission computed tomography dopamine transporter scans using transfer learning. Nucl Med Commun 2018;39:887–93. https://doi.org/10.1097/MNM.0000000000000890.
[258] Papp L, Pötsch N, Grahovac M, Schmidbauer V, Woehrer A, Preusser M, et al. Glioma Survival Prediction with Combined Analysis of In Vivo 11C-MET PET Features, Ex Vivo Features, and Patient Features by Supervised Machine Learning. J Nucl Med 2018;59:892–9. https://doi.org/10.2967/jnumed.117.202267.
[259] Xiong J, Yu W, Ma J, Ren Y, Fu X, Zhao J. The Role of PET-Based Radiomic Features in Predicting Local Control of Esophageal Cancer Treated with Concurrent Chemoradiotherapy. Scientific Reports 2018;8:9902. https://doi.org/10.1038/s41598-018-28243-x.
[260] Milgrom SA, Elhalawani H, Lee J, Wang Q, Mohamed ASR, Dabaja BS, et al. A PET Radiomics Model to Predict Refractory Mediastinal Hodgkin Lymphoma. Sci Rep 2019;9:1322. https://doi.org/10.1038/s41598-018-37197-z.
[261] Lucia F, Visvikis D, Vallières M, Desseroit M-C, Miranda O, Robin P, et al. External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy. Eur J Nucl Med Mol Imaging 2019;46:864–77. https://doi.org/10.1007/s00259-018-4231-9.
[262] Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: A system for large-scale machine learning n.d.:21.
[263] Team K. Keras documentation: Keras FAQ 2015. https://keras.io/getting_started/faq/#how-should-i-cite-keras (accessed August 10, 2020).
[264] Ketkar N. Deep Learning with Python: A Hands-on Introduction. Apress; 2017. https://doi.org/10.1007/978-1-4842-2766-4.
[265] Griethuysen JJM van, Fedorov A, Parmar C, Hosny A, Aucoin N, Narayan V, et al. Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res 2017;77:e104–7. https://doi.org/10.1158/0008-5472.CAN-17-0339.
[266] Nioche C, Orlhac F, Boughdad S, Reuzé S, Goya-Outi J, Robert C, et al. LIFEx: A Freeware for Radiomic Feature Calculation in Multimodality Imaging to Accelerate Advances in the Characterization of Tumor Heterogeneity. Cancer Res 2018;78:4786–9. https://doi.org/10.1158/0008-5472.CAN-18-0125.
[267] Götz M, Nolden M, Maier-Hein K. MITK Phenotyping: An open-source toolchain for image-based personalized medicine with radiomics. Radiother Oncol 2019;131:108–11. https://doi.org/10.1016/j.radonc.2018.11.021.
[268] Parekh VS, Jacobs MA. MPRAD: A Multiparametric Radiomics Framework. Breast Cancer Res Treat 2020;180:407–21. https://doi.org/10.1007/s10549-020-05533-5.
[269] Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research 2011;12:2825–30.
[270] Therneau T, Atkinson B, port BR (producer of the initial R, maintainer 1999-2017). rpart: Recursive Partitioning and Regression Trees. 2019.
[271] Kuhn M. Building Predictive Models in R Using the caret Package. Journal of Statistical Software 2008;28:1–26. https://doi.org/10.18637/jss.v028.i05.
[272] Papp L, Rausch I, Grahovac M, Hacker M, Beyer T. Optimized Feature Extraction for Radiomics Analysis of 18F-FDG PET Imaging. J Nucl Med 2019;60:864–72. https://doi.org/10.2967/jnumed.118.217612.
[273] Orlhac F, Boughdad S, Philippe C, Stalla-Bourdillon H, Nioche C, Champion L, et al. A Postreconstruction Harmonization Method for Multicenter Radiomic Studies in PET. J Nucl Med 2018;59:1321–8. https://doi.org/10.2967/jnumed.117.199935.
[274] Zhang Y-D, Wu L. An Mr Brain Images Classifier via Principal Component Analysis and Kernel Support Vector Machine. Progress In Electromagnetics Research 2012;130:369–88. https://doi.org/10.2528/PIER12061410.
[275] Kotsiantis S, Kanellopoulos D, Pintelas P. Handling imbalanced datasets: A review. GESTS International Transactions on Computer Science and Engineering, Vol.30, 2006.
[276] Hu S, Liang Y, Ma L, He Y. MSMOTE: Improving Classification Performance When Training Data is Imbalanced. 2009 Second International Workshop on Computer Science and Engineering, vol. 2, 2009, p. 13–7. https://doi.org/10.1109/WCSE.2009.756.
[277] Hodge VJ, Austin J. A Survey of Outlier Detection Methodologies. Artif Intell Rev 2004;22:85–126. https://doi.org/10.1007/s10462-004-4304-y.
[278] Zhu J-Y, Park T, Isola P, Efros AA. Unpaired Image-to-Image Translation Using Cycle-Consistent Adversarial Networks. 2017 IEEE International Conference on Computer Vision (ICCV), Venice: IEEE; 2017, p. 2242–51. https://doi.org/10.1109/ICCV.2017.244.
[279] Shin H-C, Tenenholtz NA, Rogers JK, Schwarz CG, Senjem ML, Gunter JL, et al. Medical Image Synthesis for Data Augmentation and Anonymization using Generative Adversarial Networks. ArXiv:180710225 [Cs, Stat] 2018.
[280] Pan SJ, Yang Q. A Survey on Transfer Learning. IEEE Transactions on Knowledge and Data Engineering 2010;22:1345–59. https://doi.org/10.1109/TKDE.2009.191.
[281] Shin H-C, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning. IEEE Trans Med Imaging 2016;35:1285–98. https://doi.org/10.1109/TMI.2016.2528162.
[282] Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013;26:1045–57. https://doi.org/10.1007/s10278-013-9622-7.
[283] Hosny A, Parmar C, Quackenbush J, Schwartz LH, Aerts HJWL. Artificial intelligence in radiology. Nature Reviews Cancer 2018;18:500–10. https://doi.org/10.1038/s41568-018-0016-5.
[284] Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. Radiology 2020;295:328–38. https://doi.org/10.1148/radiol.2020191145.
[285] Orlhac F, Frouin F, Nioche C, Ayache N, Buvat I. Validation of A Method to Compensate Multicenter Effects Affecting CT Radiomics. Radiology 2019;291:53–9. https://doi.org/10.1148/radiol.2019182023.
[286] Gilpin LH, Bau D, Yuan BZ, Bajwa A, Specter M, Kagal L. Explaining Explanations: An Overview of Interpretability of Machine Learning. ArXiv:180600069 [Cs, Stat] 2019.
[287] Zhang Q, Zhu S. Visual interpretability for deep learning: a survey. Frontiers Inf Technol Electronic Eng 2018;19:27–39. https://doi.org/10.1631/FITEE.1700808.
[288] Hustinx R. Physician centred imaging interpretation is dying out — why should I be a nuclear medicine physician? Eur J Nucl Med Mol Imaging 2019;46:2708–14. https://doi.org/10.1007/s00259-019-04371-y.
[289] Begoli E, Bhattacharya T, Kusnezov D. The need for uncertainty quantification in machine-assisted medical decision making. Nature Machine Intelligence 2019;1:20–3. https://doi.org/10.1038/s42256-018-0004-1.
[290] Liu X, Faes L, Kale AU, Wagner SK, Fu DJ, Bruynseels A, et al. A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. The Lancet Digital Health 2019;1:e271–97. https://doi.org/10.1016/S2589-7500(19)30123-2.
[291] Ribeiro MT, Singh S, Guestrin C. “Why Should I Trust You?”: Explaining the Predictions of Any Classifier. ArXiv:160204938 [Cs, Stat] 2016.
[292] Avati A, Jung K, Harman S, Downing L, Ng A, Shah NH. Improving Palliative Care with Deep Learning. ArXiv:171106402 [Cs, Stat] 2017.
[293] Baker RE, Peña J-M, Jayamohan J, Jérusalem A. Mechanistic models versus machine learning, a fight worth fighting for the biological community? Biology Letters 2018;14:20170660. https://doi.org/10.1098/rsbl.2017.0660.
[294] Warraich HJ, Califf RM, Krumholz HM. The digital transformation of medicine can revitalize the patient-clinician relationship. Npj Digital Medicine 2018;1:1–3. https://doi.org/10.1038/s41746-018-0060-2.
[295] Lysaght T, Lim HY, Xafis V, Ngiam KY. AI-Assisted Decision-making in Healthcare. ABR 2019;11:299–314. https://doi.org/10.1007/s41649-019-00096-0.
[296] Keane PA, Topol EJ. With an eye to AI and autonomous diagnosis. Npj Digital Medicine 2018;1:1–3. https://doi.org/10.1038/s41746-018-0048-y.
[297] Lim, Hannah. Data protection in the practical context :strategies and techniques /Hannah YeeFen Lim. – National Library. Singapore: Singapore Academy of Law; 2017.
[298] Reisman M. EHRs: The Challenge of Making Electronic Data Usable and Interoperable. P T 2017;42:572–5.
[299] Orlando AW, Rosoff AJ. The New Privacy Crisis: What’s Health Got to Do with It? The American Journal of Medicine 2019;132:127–8. https://doi.org/10.1016/j.amjmed.2018.09.033.
[300] Jalali MS, Kaiser JP. Cybersecurity in Hospitals: A Systematic, Organizational Perspective. Journal of Medical Internet Research 2018;20:e10059. https://doi.org/10.2196/10059.
[301] Gottesman O, Johansson F, Komorowski M, Faisal A, Sontag D, Doshi-Velez F, et al. Guidelines for reinforcement learning in healthcare. Nature Medicine 2019;25:16–8. https://doi.org/10.1038/s41591-018-0310-5.
[302] Bostrom N. Superintelligence: Paths, dangers, strategies. New York, NY, US: Oxford University Press; 2014.
[303] Hall M. Artificial intelligence and nuclear medicine. Nuclear Medicine Communications 2019;40:1–2. https://doi.org/10.1097/MNM.0000000000000937.
[304] Vogel L. Plan needed to capitalize on robots, AI in health care. CMAJ 2017;189:E329–30. https://doi.org/10.1503/cmaj.1095395.
[305] Oravec JA. Artificial Intelligence, Automation, and Social Welfare: Some Ethical and Historical Perspectives on Technological Overstatement and Hyperbole. Ethics and Social Welfare 2019;13:18–32. https://doi.org/10.1080/17496535.2018.1512142.