[1] Medicine I of. Emerging Safety Science: Workshop Summary. 2008. https://doi.org/10.17226/11975.
[2] US Food & Drug Administration. List of Cleared or Approved Companion Diagnostic Devices (In Vitro and Imaging Tools). FDA 2020. https://www.fda.gov/medical-devices/vitro-diagnostics/list-cleared-or-approved-companion-diagnostic-devices-vitro-and-imaging-tools (accessed July 21, 2020).
[3] Del Vecchio S, Zannetti A, Fonti R, Pace L, Salvatore M. Nuclear imaging in cancer theranostics. Q J Nucl Med Mol Imaging 2007;51:152–63.
[4] Smanik PA, Liu Q, Furminger TL, Ryu K, Xing S, Mazzaferri EL, et al. Cloning of the human sodium lodide symporter. Biochem Biophys Res Commun 1996;226:339–45. https://doi.org/10.1006/bbrc.1996.1358.
[5] Robbins RJ, Schlumberger MJ. The evolving role of (131)I for the treatment of differentiated thyroid carcinoma. J Nucl Med 2005;46 Suppl 1:28S-37S.
[6] Wyszomirska A. Iodine-131 for therapy of thyroid diseases. Physical and biological basis. Nucl Med Rev Cent East Eur 2012;15:120–3.
[7] Strosberg J, El-Haddad G, Wolin E, Hendifar A, Yao J, Chasen B, et al. Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. New England Journal of Medicine 2017;376:125–35. https://doi.org/10.1056/NEJMoa1607427.
[8] Rahbar K, Bodei L, Morris MJ. Is the Vision of Radioligand Therapy for Prostate Cancer Becoming a Reality? An Overview of the Phase III VISION Trial and Its Importance for the Future of Theranostics. J Nucl Med 2019;60:1504–6. https://doi.org/10.2967/jnumed.119.234054.
[9] Eberlein U, Cremonesi M, Lassmann M. Individualized Dosimetry for Theranostics: Necessary, Nice to Have, or Counterproductive? J Nucl Med 2017;58:97S-103S. https://doi.org/10.2967/jnumed.116.186841.
[10] Garin E, Rolland Y, Pracht M, Le Sourd S, Laffont S, Mesbah H, et al. High impact of macroaggregated albumin-based tumour dose on response and overall survival in hepatocellular carcinoma patients treated with 90 Y-loaded glass microsphere radioembolization. Liver Int 2017;37:101–10. https://doi.org/10.1111/liv.13220.
[11] Hermann A-L, Dieudonné A, Ronot M, Sanchez M, Pereira H, Chatellier G, et al. Relationship of Tumor Radiation–absorbed Dose to Survival and Response in Hepatocellular Carcinoma Treated with Transarterial Radioembolization with 90Y in the SARAH Study. Radiology 2020:191606. https://doi.org/10.1148/radiol.2020191606.
[12] Imhof A, Brunner P, Marincek N, Briel M, Schindler C, Rasch H, et al. Response, Survival, and Long-Term Toxicity After Therapy With the Radiolabeled Somatostatin Analogue [90 Y-DOTA]-TOC in Metastasized Neuroendocrine Cancers. Journal of Clinical Oncology 2011;29:2416–2423. https://doi.org/10.1200/JCO.2010.33.7873.
[13] Suman S, Parghane RV, Joshi A, Prabhash K, Bakshi G, Talole S, et al. Therapeutic efficacy, prognostic variables and clinical outcome of 177Lu-PSMA-617 PRLT in progressive mCRPC following multiple lines of treatment: prognostic implications of high FDG uptake on dual tracer PET-CT vis-à-vis Gleason score in such cohort. Br J Radiol 2019;92:20190380. https://doi.org/10.1259/bjr.20190380.
[14] Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the Treatment of Non–Small-Cell Lung Cancer. New England Journal of Medicine 2015;372:2018–28. https://doi.org/10.1056/NEJMoa1501824.
[15] Zhang J, Shi Z, Xu X, Yu Z, Mi J. The influence of microenvironment on tumor immunotherapy. The FEBS Journal 2019;286:4160–75. https://doi.org/10.1111/febs.15028.
[16] Van Overmeire E, Laoui D, Keirsse J, Van Ginderachter JA. Hypoxia and tumor-associated macrophages: A deadly alliance in support of tumor progression. Oncoimmunology 2014;3:e27561. https://doi.org/10.4161/onci.27561.
[17] Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS, van Dongen GAMS, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nature Communications 2018;9:4664. https://doi.org/10.1038/s41467-018-07131-y.
[18] Bensch F, van der Veen EL, Lub-de Hooge MN, Jorritsma-Smit A, Boellaard R, Kok IC, et al. 89Zr-atezolizumab imaging as a non-invasive approach to assess clinical response to PD-L1 blockade in cancer. Nat Med 2018;24:1852–8. https://doi.org/10.1038/s41591-018-0255-8.
[19] Tang H, Qiao J, Fu Y-X. Immunotherapy and tumor microenvironment. Cancer Lett 2016;370:85–90. https://doi.org/10.1016/j.canlet.2015.10.009.
[20] Sykiotis GP, Kalliolias GD, Papavassiliou AG. Pharmacogenetic principles in the Hippocratic writings. J Clin Pharmacol 2005;45:1218–20. https://doi.org/10.1177/0091270005281091.
[21] EUR-Lex - 32013L0059 - EN - EUR-Lex n.d. https://eur-lex.europa.eu/eli/dir/2013/59/oj (accessed July 21, 2020).
[22] Sjögreen Gleisner K, Spezi E, Solny P, Gabina PM, Cicone F, Stokke C, et al. Variations in the practice of molecular radiotherapy and implementation of dosimetry: results from a European survey. EJNMMI Phys 2017;4:28. https://doi.org/10.1186/s40658-017-0193-4.
[23] Stokke C, Gabiña PM, Solný P, Cicone F, Sandström M, Gleisner KS, et al. Dosimetry-based treatment planning for molecular radiotherapy: a summary of the 2017 report from the Internal Dosimetry Task Force. EJNMMI Phys 2017;4:27. https://doi.org/10.1186/s40658-017-0194-3.
[24] Chiesa C, Pacilio M, Strigari L, Bagni O, Goretti OSM, Maccauro M, et al. TERAPIA MEDICO NUCLEARE: OTTIMIZZAZIONE SU BASE DOSIMETRICA AI SENSI DELLA DIRETTIVA EUROPEA 2013/59/EURATOM n.d.:40.
[25] Chiesa C, Sjogreen Gleisner K, Flux G, Gear J, Walrand S, Bacher K, et al. The conflict between treatment optimization and registration of radiopharmaceuticals with fixed activity posology in oncological nuclear medicine therapy. Eur J Nucl Med Mol Imaging 2017;44:1783–6. https://doi.org/10.1007/s00259-017-3707-3.
[26] Caruana CJ, Tsapaki V, Damilakis J, Brambilla M, Martín GM, Dimov A, et al. EFOMP policy statement 16: The role and competences of medical physicists and medical physics experts under 2013/59/EURATOM. Phys Med 2018;48:162–8. https://doi.org/10.1016/j.ejmp.2018.03.001.
[27] Strigari L, Konijnenberg M, Chiesa C, Bardies M, Du Y, Gleisner KS, et al. The evidence base for the use of internal dosimetry in the clinical practice of molecular radiotherapy. Eur J Nucl Med Mol Imaging 2014;41:1976–88. https://doi.org/10.1007/s00259-014-2824-5.
[28] Wilke L, Andratschke N, Blanck O, Brunner TB, Combs SE, Grosu A-L, et al. ICRU report 91 on prescribing, recording, and reporting of stereotactic treatments with small photon beams. Strahlenther Onkol 2019;195:193–8. https://doi.org/10.1007/s00066-018-1416-x.
[29] Lassmann M, Chiesa C, Flux G, Bardiès M, EANM Dosimetry Committee. EANM Dosimetry Committee guidance document: good practice of clinical dosimetry reporting. Eur J Nucl Med Mol Imaging 2011;38:192–200. https://doi.org/10.1007/s00259-010-1549-3.
[30] Siegel JA, Thomas SR, Stubbs JB, Stabin MG, Hays MT, Koral KF, et al. MIRD pamphlet no. 16: Techniques for quantitative radiopharmaceutical biodistribution data acquisition and analysis for use in human radiation dose estimates. J Nucl Med 1999;40:37S-61S.
[31] Wessels BW, Konijnenberg MW, Dale RG, Breitz HB, Cremonesi M, Meredith RF, et al. MIRD Pamphlet No. 20: The Effect of Model Assumptions on Kidney Dosimetry and Response–Implications for Radionuclide Therapy. Journal of Nuclear Medicine 2008;49:1884–1899. https://doi.org/10.2967/jnumed.108.053173.
[32] Bolch WE, Eckerman KF, Sgouros G, Thomas SR. MIRD pamphlet No. 21: a generalized schema for radiopharmaceutical dosimetry--standardization of nomenclature. J Nucl Med 2009;50:477–84. https://doi.org/10.2967/jnumed.108.056036.
[33] Sgouros G, Roeske JC, McDevitt MR, Palm S, Allen BJ, Fisher DR, et al. MIRD Pamphlet No. 22 (Abridged): Radiobiology and Dosimetry of α-Particle Emitters for Targeted Radionuclide Therapy. J Nucl Med 2010;51:311–28. https://doi.org/10.2967/jnumed.108.058651.
[34] Dewaraja YK, Frey EC, Sgouros G, Brill AB, Roberson P, Zanzonico PB, et al. MIRD pamphlet No. 23: quantitative SPECT for patient-specific 3-dimensional dosimetry in internal radionuclide therapy. J Nucl Med 2012;53:1310–25. https://doi.org/10.2967/jnumed.111.100123.
[35] Dewaraja YK, Ljungberg M, Green AJ, Zanzonico PB, Frey EC, SNMMI MIRD Committee SM, et al. MIRD pamphlet No. 24: Guidelines for quantitative 131I SPECT in dosimetry applications. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2013;54:2182–8. https://doi.org/10.2967/jnumed.113.122390.
[36] Ljungberg M, Celler A, Konijnenberg MW, Eckerman KF, Dewaraja YK, Sjogreen-Gleisner K, et al. MIRD Pamphlet No. 26: Joint EANM/MIRD Guidelines for Quantitative 177Lu SPECT Applied for Dosimetry of Radiopharmaceutical Therapy. Journal of Nuclear Medicine 2016;57:151–162. https://doi.org/10.2967/jnumed.115.159012.
[37] Gear J, Chiesa C, Lassmann M, Gabiña PM, Tran-Gia J, Stokke C, et al. EANM Dosimetry Committee series on standard operational procedures for internal dosimetry for 131I mIBG treatment of neuroendocrine tumours. EJNMMI Phys 2020;7:15. https://doi.org/10.1186/s40658-020-0282-7.
[38] Hänscheid H, Canzi C, Eschner W, Flux G, Luster M, Strigari L, et al. EANM Dosimetry Committee Series on Standard Operational Procedures for Pre-Therapeutic Dosimetry II. Dosimetry prior to radioiodine therapy of benign thyroid diseases n.d.
[39] Hindorf C, Glatting G, Chiesa C, Lindén O, Flux G. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging 2010;37:1238–50. https://doi.org/10.1007/s00259-010-1422-4.
[40] Lassmann M, Hänscheid H, Chiesa C, Hindorf C, Flux G, Luster M. EANM Dosimetry Committee series on standard operational procedures for pre-therapeutic dosimetry I: blood and bone marrow dosimetry in differentiated thyroid cancer therapy 2008. https://doi.org/10.1007/s00259-008-0761-x.
[41] Gear JI, Cox MG, Gustafsson J, Gleisner KS, Murray I, Glatting G, et al. EANM practical guidance on uncertainty analysis for molecular radiotherapy absorbed dose calculations. Eur J Nucl Med Mol Imaging 2018;45:2456–74. https://doi.org/10.1007/s00259-018-4136-7.
[42] Huq MS, Fraass BA, Dunscombe PB, Gibbons JP, Ibbott GS, Mundt AJ, et al. The report of Task Group 100 of the AAPM: Application of risk analysis methods to radiation therapy quality management. Med Phys 2016;43:4209. https://doi.org/10.1118/1.4947547.
[43] Stokkel MPM, Handkiewicz Junak D, Lassmann M, Dietlein M, Luster M. EANM procedure guidelines for therapy of benign thyroid disease. Eur J Nucl Med Mol Imaging 2010;37:2218–28. https://doi.org/10.1007/s00259-010-1536-8.
[44] Luster M, Clarke SE, Dietlein M, Lassmann M, Lind P, Oyen WJG, et al. Guidelines for radioiodine therapy of differentiated thyroid cancer. European Journal of Nuclear Medicine and Molecular Imaging 2008;35:1941–1959. https://doi.org/10.1007/s00259-008-0883-1.
[45] Giammarile F, Chiti A, Lassmann M, Brans B, Flux G. EANM procedure guidelines for 131I-meta-iodobenzylguanidine (131I-mIBG) therapy. European Journal of Nuclear Medicine and Molecular Imaging 2008;35:1039–1047. https://doi.org/10.1007/s00259-008-0715-3.
[46] Bodei L, Mueller-Brand J, Baum RP, Pavel ME, Hörsch D, O’Dorisio MS, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging 2013;40:800–16. https://doi.org/10.1007/s00259-012-2330-6.
[47] Poeppel TD, Handkiewicz-Junak D, Andreeff M, Becherer A, Bockisch A, Fricke E, et al. EANM guideline for radionuclide therapy with radium-223 of metastatic castration-resistant prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging 2018;45:824–845. https://doi.org/10.1007/s00259-017-3900-4.
[48] Giammarile F, Bodei L, Chiesa C, Flux G, Forrer F, Kraeber-Bodere F, et al. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging 2011;38:1393–406. https://doi.org/10.1007/s00259-011-1812-2.
[49] Clunie G, Fischer M, EANM. EANM procedure guidelines for radiosynovectomy. European Journal of Nuclear Medicine and Molecular Imaging 2003;30:BP12–6.
[50] Tennvall J, Fischer M, Bischof Delaloye A, Bombardieri E, Bodei L, Giammarile F, et al. EANM procedure guideline for radio-immunotherapy for B-cell lymphoma with 90Y-radiolabelled ibritumomab tiuxetan (Zevalin). European Journal of Nuclear Medicine and Molecular Imaging 2007;34:616–622. https://doi.org/10.1007/s00259-007-0372-y.
[51] Fisher DR, Shen S, Meredith RF. MIRD Dose Estimate Report No. 20: Radiation Absorbed-Dose Estimates for 111In- and 90Y-Ibritumomab Tiuxetan. Journal of Nuclear Medicine 2009;50:644–652. https://doi.org/10.2967/jnumed.108.057331.
[52] Kratochwil C, Fendler WP, Eiber M, Baum R, Bozkurt MF, Czernin J, et al. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging 2019;46:2536–44. https://doi.org/10.1007/s00259-019-04485-3.
[53] Bodei L, Lam M, Chiesa C, Flux G, Brans B, Chiti A, et al. EANM procedure guideline for treatment of refractory metastatic bone pain. European Journal of Nuclear Medicine and Molecular Imaging 2008;35:1934–1940. https://doi.org/10.1007/s00259-008-0841-y.
[54] Blake GM, Zivanovic MA, Blaquiere RM, Fine DR, McEwan AJ, Ackery DM. Strontium-89 therapy: measurement of absorbed dose to skeletal metastases. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 1988;29:549–57.
[55] Finlay IG, Mason MD, Shelley M. Radioisotopes for the palliation of metastatic bone cancer: a systematic review. The Lancet Oncology 2005;6:392–400. https://doi.org/10.1016/S1470-2045(05)70206-0.
[56] Breen SL, Powe JE, Porter AT. Dose estimation in strontium-89 radiotherapy of metastatic prostatic carcinoma. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 1992;33:1316–23.
[57] ICRP. ICRP Publication 53. Radiation dose to patients from radiopharmaceuticals. Annals ICRP 1988;18.
[58] Vigna L, Matheoud R, Ridone S, Arginelli D, Della Monica P, Rudoni M, et al. Characterization of the [(153)Sm]Sm-EDTMP pharmacokinetics and estimation of radiation absorbed dose on an individual basis. Phys Med 2011;27:144–52. https://doi.org/10.1016/j.ejmp.2010.08.001.
[59] Loeb DM, Hobbs RF, Okoli A, Chen AR, Cho S, Srinivasan S, et al. Tandem dosing of samarium-153 ethylenediamine tetramethylene phosphoric acid with stem cell support for patients with high-risk osteosarcoma. Cancer 2010;116:5470–8. https://doi.org/10.1002/cncr.25518.
[60] Senthamizhchelvan S, Hobbs RF, Song H, Frey EC, Zhang Z, Armour E, et al. Tumor dosimetry and response for 153Sm-ethylenediamine tetramethylene phosphonic acid therapy of high-risk osteosarcoma. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2012;53:215–24. https://doi.org/10.2967/jnumed.111.096677.
[61] Eary JF, Collins C, Stabin M, Vernon C, Petersdorf S, Baker M, et al. Samarium-153-EDTMP biodistribution and dosimetry estimation. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 1993;34:1031–6.
[62] Sapienza MT, Ono CR, Guimarães MIC, Watanabe T, Costa PA, Buchpiguel CA. Retrospective evaluation of bone pain palliation after samarium-153-EDTMP therapy. Rev Hosp Clin Fac Med Sao Paulo 2004;59:321–8. https://doi.org/10.1590/s0041-87812004000600003.
[63] Serafini AN, Houston SJ, Resche I, Quick DP, Grund FM, Ell PJ, et al. Palliation of pain associated with metastatic bone cancer using samarium-153 lexidronam: a double-blind placebo-controlled clinical trial. J Clin Oncol 1998;16:1574–81. https://doi.org/10.1200/JCO.1998.16.4.1574.
[64] Sartor O, Reid RH, Hoskin PJ, Quick DP, Ell PJ, Coleman RE, et al. Samarium-153-Lexidronam complex for treatment of painful bone metastases in hormone-refractory prostate cancer. Urology 2004;63:940–5. https://doi.org/10.1016/j.urology.2004.01.034.
[65] Pacilio M, Ventroni G, Basile C, Ialongo P, Becci D, Mango L. Improving the dose–myelotoxicity correlation in radiometabolic therapy of bone metastases with 153Sm-EDTMP. European Journal of Nuclear Medicine and Molecular Imaging 2014;41:238–252. https://doi.org/10.1007/s00259-013-2552-2.
[66] Andreou M, Lagopati N, Lyra M. Re-186 and Sm-153 dosimetry based on scintigraphic imaging data in skeletal metastasis palliative treatment and Monte Carlo simulation. J Phys: Conf Ser 2011;317:012013. https://doi.org/10.1088/1742-6596/317/1/012013.
[67] Denis-Bacelar AM, Chittenden SJ, Dearnaley DP, Divoli A, O’Sullivan JM, McCready VR, et al. Phase I/II trials of 186Re-HEDP in metastatic castration-resistant prostate cancer: post-hoc analysis of the impact of administered activity and dosimetry on survival. Eur J Nucl Med Mol Imaging 2017;44:620–9. https://doi.org/10.1007/s00259-016-3543-x.
[68] Palmedo H, Guhlke S, Bender H, Sartor J, Schoeneich G, Risse J, et al. Dose escalation study with rhenium-188 hydroxyethylidene diphosphonate in prostate cancer patients with osseous metastases. Eur J Nucl Med 2000;27:123–30. https://doi.org/10.1007/s002590050017.
[69] Han SH, de Klerk JMH, Tan S, van het Schip AD, Derksen BH, van Dijk A, et al. The PLACORHEN study: a double-blind, placebo-controlled, randomized radionuclide study with (186)Re-etidronate in hormone-resistant prostate cancer patients with painful bone metastases. Placebo Controlled Rhenium Study. J Nucl Med 2002;43:1150–6.
[70] CHMP. Annex I Summary of Product Characteristics 2019. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002653/WC500156172.pdf.
[71] Coleman R, Aksnes A-K, Naume B, Garcia C, Jerusalem G, Piccart M, et al. A phase IIa, nonrandomized study of radium-223 dichloride in advanced breast cancer patients with bone-dominant disease. Breast Cancer Res Treat 2014;145:411–8. https://doi.org/10.1007/s10549-014-2939-1.
[72] Ueno NT, Tahara RK, Fujii T, Reuben JM, Gao H, Saigal B, et al. Phase II study of Radium‐223 dichloride combined with hormonal therapy for hormone receptor‐positive, bone‐dominant metastatic breast cancer. Cancer Med 2019;9:1025–32. https://doi.org/10.1002/cam4.2780.
[73] Subbiah V, Anderson PM, Kairemo K, Hess KR, Huh WW, Ravi V, et al. Alpha particle Radium 223 dichloride in high-risk osteosarcoma: a phase I dose escalation trial. Clin Cancer Res 2019. https://doi.org/10.1158/1078-0432.CCR-18-3964.
[74] Hindorf C, Chittenden S, Aksnes A-K, Parker C, Flux GD. Quantitative imaging of 223Ra-chloride (Alpharadin) for targeted alpha-emitting radionuclide therapy of bone metastases. Nuclear Medicine Communications 2012;33:726–732. https://doi.org/10.1097/MNM.0b013e328353bb6e.
[75] Hoskin P, Sartor O, O’Sullivan JM, Johannessen DC, Helle SI, Logue J, et al. Efficacy and safety of radium-223 dichloride in patients with castration-resistant prostate cancer and symptomatic bone metastases, with or without previous docetaxel use: a prespecified subgroup analysis from the randomised, double-blind, phase 3 ALSYMPCA trial. The Lancet Oncology 2014;15:1397–1406. https://doi.org/10.1016/S1470-2045(14)70474-7.
[76] Tombal BF, Loriot Y, Saad F, McDermott RS, Elliott T, Rodriguez-Vida A, et al. Decreased fracture rate by mandating bone-protecting agents in the EORTC 1333/PEACE III trial comparing enzalutamide and Ra223 versus enzalutamide alone: An interim safety analysis. JCO 2019;37:5007–5007. https://doi.org/10.1200/JCO.2019.37.15_suppl.5007.
[77] Lassmann M, Nosske D. Dosimetry of 223Ra-chloride: dose to normal organs and tissues. European Journal of Nuclear Medicine and Molecular Imaging 2013;40:207–212. https://doi.org/10.1007/s00259-012-2265-y.
[78] Carrasquillo JA, O’Donoghue JA, Pandit-Taskar N, Humm JL, Rathkopf DE, Slovin SF, et al. Phase I pharmacokinetic and biodistribution study with escalating doses of 223Ra-dichloride in men with castration-resistant metastatic prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging 2013;40:1384–1393. https://doi.org/10.1007/s00259-013-2427-6.
[79] Chittenden SJ, Hindorf C, Parker CC, Lewington VJ, Pratt BE, Johnson B, et al. A Phase 1, Open-Label Study of the Biodistribution, Pharmacokinetics, and Dosimetry of 223Ra-Dichloride in Patients with Hormone-Refractory Prostate Cancer and Skeletal Metastases. Journal of Nuclear Medicine 2015;56:1304–1309. https://doi.org/10.2967/jnumed.115.157123.
[80] Parker C, Nilsson S, Heinrich D, Helle SI, O’Sullivan JM, Foss\a a SD, et al. Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. New England Journal of Medicine 2013;369:213–223. https://doi.org/10.1056/NEJMoa1213755.
[81] Morris MJ, Loriot Y, Sweeney CJ, Fizazi K, Ryan CJ, Shevrin DH, et al. Radium-223 in combination with docetaxel in patients with castration-resistant prostate cancer and bone metastases: a phase 1 dose escalation/randomised phase 2a trial. Eur J Cancer 2019;114:107–16. https://doi.org/10.1016/j.ejca.2019.04.007.
[82] Sternberg CN, Saad F, Graff JN, Peer A, Vaishampayan UN, Leung E, et al. A randomised phase II trial of three dosing regimens of radium-223 in patients with bone metastatic castration-resistant prostate cancer. Ann Oncol 2020;31:257–65. https://doi.org/10.1016/j.annonc.2019.10.025.
[83] Parker CC, Coleman RE, Sartor O, Vogelzang NJ, Bottomley D, Heinrich D, et al. Three-year Safety of Radium-223 Dichloride in Patients with Castration-resistant Prostate Cancer and Symptomatic Bone Metastases from Phase 3 Randomized Alpharadin in Symptomatic Prostate Cancer Trial. European Urology 2017. https://doi.org/10.1016/J.EURURO.2017.06.021.
[84] Smith M, Parker C, Saad F, Miller K, Tombal B, Ng QS, et al. Addition of radium-223 to abiraterone acetate and prednisone or prednisolone in patients with castration-resistant prostate cancer and bone metastases (ERA 223): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 2019;20:408–19. https://doi.org/10.1016/S1470-2045(18)30860-X.
[85] Van den Wyngaert T, Tombal B. The changing role of radium-223 in metastatic castrate-resistant prostate cancer: has the EMA missed the mark with revising the label? Q J Nucl Med Mol Imaging 2019;63:170–82. https://doi.org/10.23736/S1824-4785.19.03205-9.
[86] Bowring CS, Keeling DH. Absorbed radiation dose in radiation synovectomy. Br J Radiol 1978;51:836–7. https://doi.org/10.1259/0007-1285-51-610-836.
[87] Knut L. Radiosynovectomy in the therapeutic management of arthritis. World J Nucl Med 2015;14:10–5. https://doi.org/10.4103/1450-1147.150509.
[88] Gratz S, Göbel D, Behr TM, Herrmann A, Becker W. Correlation between radiation dose, synovial thickness, and efficacy of radiosynoviorthesis. J Rheumatol 1999;26:1242–9.
[89] Manil L, Voisin P, Aubert B, Guerreau D, Verrier P, Lebègue L, et al. Physical and biological dosimetry in patients undergoing radiosynoviorthesis with erbium-169 and rhenium-186. Nucl Med Commun 2001;22:405–16. https://doi.org/10.1097/00006231-200104000-00009.
[90] Kampen WU, Fischer M, editors. Dosimetry and Radiation Exposure of Patients. Local Treatment of Inflammatory Joint Diseases: Benefits and Risks, Springer International Publishing; 2015. https://doi.org/10.1007/978-3-319-16949-1.
[91] Silberstein EB, Alavi A, Balon HR, Clarke SEM, Divgi C, Gelfand MJ, et al. The SNMMI Practice Guideline for Therapy of Thyroid Disease with 131I 3.0. Journal of Nuclear Medicine 2012;53:1633–1651. https://doi.org/10.2967/jnumed.112.105148.
[92] Marinelli LD, Quimby EH, Hine GJ. Dosage determination with radioactive isotopes; practical considerations in therapy and protection. The American Journal of Roentgenology and Radium Therapy 1948;59:260–81.
[93] Salvatori M, Luster M. Radioiodine therapy dosimetry in benign thyroid disease and differentiated thyroid carcinoma. European Journal of Nuclear Medicine and Molecular Imaging 2010;37:821–828. https://doi.org/10.1007/s00259-010-1398-0.
[94] Dunkelmann S, Neumann V, Staub U, Groth P, Künstner H, Schümichen C. Results of a risk adapted and functional radioiodine therapy in Graves’ disease. Nuklearmedizin Archive 2005;44:238–242.
[95] Reinhardt MJ, Brink I, Joe AY, von Mallek D, Ezziddin S, Palmedo H, et al. Radioiodine therapy in Graves’ disease based on tissue-absorbed dose calculations: effect of pre-treatment thyroid volume on clinical outcome. European Journal of Nuclear Medicine and Molecular Imaging 2002;29:1118–1124. https://doi.org/10.1007/s00259-002-0877-3.
[96] Kobe C, Eschner W, Wild M, Rahlff I, Sudbrock F, Schmidt M, et al. Radioiodine therapy of benign thyroid disorders: what are the effective thyroidal half-life and uptake of 131I? Nuclear Medicine Communications 2010;31:201–205. https://doi.org/10.1097/MNM.0b013e328333d303.
[97] Reinhardt MJ, Biermann K, Wissmeyer M, Juengling FD, Brockmann H, von Mallek D, et al. Dose selection for radioiodine therapy of borderline hyperthyroid patients according to thyroid uptake of 99mTc-pertechnetate: applicability to unifocal thyroid autonomy? European Journal of Nuclear Medicine and Molecular Imaging 2006;33:608–612. https://doi.org/10.1007/s00259-005-0051-9.
[98] Dunkelmann S, Endlicher D, Prillwitz A, Rudolph F, Groth P, Schümichen C. Results of TcTUs-optimized radioiodine therapy in multifocal and disseminated autonomy. Nuklearmedizin Nuclear Medicine 1999;38:131–9.
[99] Kahraman D, Keller C, Schneider C, Eschner W, Sudbrock F, Schmidt M, et al. Development of hypothyroidism during long-term follow-up of patients with toxic nodular goitre after radioiodine therapy. Clinical Endocrinology 2012;76:297–303. https://doi.org/10.1111/j.1365-2265.2011.04204.x.
[100] Bachmann J, Kobe C, Bor S, Rahlff I, Dietlein M, Schicha H, et al. Radioiodine therapy for thyroid volume reduction of large goitres. Nuclear Medicine Communications 2009;30:466–471. https://doi.org/10.1097/MNM.0b013e32832b5ccc.
[101] Strigari L, Sciuto R, Benassi M, Bergomi S, Nocentini S, Maini CL. A NTCP approach for estimating the outcome in radioiodine treatment of hyperthyroidism. Medical Physics 2008;35:3903–3910. https://doi.org/10.1118/1.2964089.
[102] Kobe C, Eschner W, Sudbrock F, Weber I, Marx K, Dietlein M, et al. Graves’ disease and radioiodine therapy. Nuklearmedizin 2008;47:13–17. https://doi.org/10.3413/nukmed-0087.
[103] Spitzweg C, Harrington KJ, Pinke LA, Vile RG, Morris JC. The Sodium Iodide Symporter and Its Potential Role in Cancer Therapy. The Journal of Clinical Endocrinology & Metabolism 2001;86:3327–3335. https://doi.org/10.1210/jcem.86.7.7641.
[104] Grewal RK, Tuttle RM, Fox J, Borkar S, Chou JF, Gonen M, et al. The effect of posttherapy 131I SPECT/CT on risk classification and management of patients with differentiated thyroid cancer. J Nucl Med 2010;51:1361–7. https://doi.org/10.2967/jnumed.110.075960.
[105] Flux GD, Haq M, Chittenden SJ, Buckley S, Hindorf C, Newbold K, et al. A dose-effect correlation for radioiodine ablation in differentiated thyroid cancer. European Journal of Nuclear Medicine and Molecular Imaging 2010;37:270–275. https://doi.org/10.1007/s00259-009-1261-3.
[106] Lassmann M, Luster M, Hänscheid H, Reiners C. Impact of 131I diagnostic activities on the biokinetics of thyroid remnants. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2004;45:619–25.
[107] Maxon HR, Thomas SR, Hertzberg VS, Kereiakes JG, Chen I-W, Sperling MI, et al. Relation between Effective Radiation Dose and Outcome of Radioiodine Therapy for Thyroid Cancer. New England Journal of Medicine 1983;309:937–941. https://doi.org/10.1056/NEJM198310203091601.
[108] Wierts R, Brans B, Havekes B, Kemerink GJ, Halders SG, Schaper NN, et al. Dose-Response Relationship in Differentiated Thyroid Cancer Patients Undergoing Radioiodine Treatment Assessed by Means of 124I PET/CT. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2016;57:1027–32. https://doi.org/10.2967/jnumed.115.168799.
[109] Pacini F, Ladenson PW, Schlumberger M, Driedger A, Luster M, Kloos RT, et al. Radioiodine ablation of thyroid remnants after preparation with recombinant human thyrotropin in differentiated thyroid carcinoma: results of an international, randomized, controlled study. J Clin Endocrinol Metab 2006;91:926–32. https://doi.org/10.1210/jc.2005-1651.
[110] Schlumberger M, Catargi B, Borget I, Deandreis D, Zerdoud S, Bridji B, et al. Strategies of radioiodine ablation in patients with low-risk thyroid cancer. N Engl J Med 2012;366:1663–73. https://doi.org/10.1056/NEJMoa1108586.
[111] Mallick U, Harmer C, Yap B, Wadsley J, Clarke S, Moss L, et al. Ablation with low-dose radioiodine and thyrotropin alfa in thyroid cancer. N Engl J Med 2012;366:1674–85. https://doi.org/10.1056/NEJMoa1109589.
[112] Wang LY, Palmer FL, Nixon IJ, Thomas D, Patel SG, Shaha AR, et al. Multi-organ distant metastases confer worse disease-specific survival in differentiated thyroid cancer. Thyroid 2014;24:1594–9. https://doi.org/10.1089/thy.2014.0173.
[113] Klubo-Gwiezdzinska J, Van Nostrand D, Atkins F, Burman K, Jonklaas J, Mete M, et al. Efficacy of dosimetric versus empiric prescribed activity of 131I for therapy of differentiated thyroid cancer. J Clin Endocrinol Metab 2011;96:3217–25. https://doi.org/10.1210/jc.2011-0494.
[114] Deandreis D, Rubino C, Tala H, Leboulleux S, Terroir M, Baudin E, et al. Comparison of Empiric Versus Whole-Body/-Blood Clearance Dosimetry-Based Approach to Radioactive Iodine Treatment in Patients with Metastases from Differentiated Thyroid Cancer. J Nucl Med 2017;58:717–22. https://doi.org/10.2967/jnumed.116.179606.
[115] Sgouros G, Song H, Ladenson PW, Wahl RL. Lung toxicity in radioiodine therapy of thyroid carcinoma: development of a dose-rate method and dosimetric implications of the 80-mCi rule. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2006;47:1977–84.
[116] Liou M-J, Tsang N-M, Hsueh C, Chao T-C, Lin J-D. Therapeutic Outcome of Second Primary Malignancies in Patients with Well-Differentiated Thyroid Cancer. International Journal of Endocrinology 2016;2016:9570171. https://doi.org/10.1155/2016/9570171.
[117] Durante C, Haddy N, Baudin E, Leboulleux S, Hartl D, Travagli JP, et al. Long-term outcome of 444 patients with distant metastases from papillary and follicular thyroid carcinoma: benefits and limits of radioiodine therapy. J Clin Endocrinol Metab 2006;91:2892–9. https://doi.org/10.1210/jc.2005-2838.
[118] Chakravarty D, Santos E, Ryder M, Knauf JA, Liao X-H, West BL, et al. Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation. J Clin Invest 2011;121:4700–11. https://doi.org/10.1172/JCI46382.
[119] Ho AL, Grewal RK, Leboeuf R, Sherman EJ, Pfister DG, Deandreis D, et al. Selumetinib-enhanced radioiodine uptake in advanced thyroid cancer. N Engl J Med 2013;368:623–32. https://doi.org/10.1056/NEJMoa1209288.
[120] Dunn LA, Sherman EJ, Baxi SS, Tchekmedyian V, Grewal RK, Larson SM, et al. Vemurafenib Redifferentiation of BRAF Mutant, RAI-Refractory Thyroid Cancers. J Clin Endocrinol Metab 2019;104:1417–28. https://doi.org/10.1210/jc.2018-01478.
[121] Rothenberg SM, Daniels GH, Wirth LJ. Redifferentiation of Iodine-Refractory BRAF V600E-Mutant Metastatic Papillary Thyroid Cancer with Dabrafenib-Response. Clin Cancer Res 2015;21:5640–1. https://doi.org/10.1158/1078-0432.CCR-15-2298.
[122] Cheng W, Liu R, Zhu G, Wang H, Xing M. Robust Thyroid Gene Expression and Radioiodine Uptake Induced by Simultaneous Suppression of BRAF V600E and Histone Deacetylase in Thyroid Cancer Cells. J Clin Endocrinol Metab 2016;101:962–71. https://doi.org/10.1210/jc.2015-3433.
[123] Zhang H, Chen D. Synergistic inhibition of MEK/ERK and BRAF V600E with PD98059 and PLX4032 induces sodium/iodide symporter (NIS) expression and radioiodine uptake in BRAF mutated papillary thyroid cancer cells. Thyroid Res 2018;11. https://doi.org/10.1186/s13044-018-0057-6.
[124] Yu X-M, Jaskula-Sztul R, Ahmed K, Harrison AD, Kunnimalaiyaan M, Chen H. Resveratrol induces differentiation markers expression in anaplastic thyroid carcinoma via activation of Notch1 signaling and suppresses cell growth. Mol Cancer Ther 2013;12:1276–87. https://doi.org/10.1158/1535-7163.MCT-12-0841.
[125] Fu H, Cheng L, Jin Y, Cheng L, Liu M, Chen L. MAPK Inhibitors Enhance HDAC Inhibitor-Induced Redifferentiation in Papillary Thyroid Cancer Cells Harboring BRAFV600E: An In Vitro Study. Mol Ther Oncolytics 2019;12:235–45. https://doi.org/10.1016/j.omto.2019.01.007.
[126] Song J, Qiu W, Deng X, Qiu Z, Fan Y, Yang Z. A somatic mutation of RasGRP3 decreases Na+/I- symporter expression in metastases of radioactive iodine-refractory thyroid cancer by stimulating the Akt signaling pathway. Am J Cancer Res 2018;8:1847–55.
[127] Brown SR, Hall A, Buckley HL, Flanagan L, Gonzalez de Castro D, Farnell K, et al. Investigating the potential clinical benefit of Selumetinib in resensitising advanced iodine refractory differentiated thyroid cancer to radioiodine therapy (SEL-I-METRY): protocol for a multicentre UK single arm phase II trial. BMC Cancer 2019;19:582. https://doi.org/10.1186/s12885-019-5541-4.
[128] Leboulleux S, Dupuy C, Lacroix L, Attard M, Grimaldi S, Corre R, et al. Redifferentiation of a BRAFK601E-Mutated Poorly Differentiated Thyroid Cancer Patient with Dabrafenib and Trametinib Treatment. Thyroid 2019;29:735–42. https://doi.org/10.1089/thy.2018.0457.
[129] Iravani A, Solomon B, Pattison DA, Jackson P, Ravi Kumar A, Kong G, et al. Mitogen-Activated Protein Kinase Pathway Inhibition for Redifferentiation of Radioiodine Refractory Differentiated Thyroid Cancer: An Evolving Protocol. Thyroid 2019;29:1634–45. https://doi.org/10.1089/thy.2019.0143.
[130] Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1–133. https://doi.org/10.1089/thy.2015.0020.
[131] Jaber T, Waguespack SG, Cabanillas ME, Elbanan M, Vu T, Dadu R, et al. Targeted Therapy in Advanced Thyroid Cancer to Resensitize Tumors to Radioactive Iodine. J Clin Endocrinol Metab 2018;103:3698–705. https://doi.org/10.1210/jc.2018-00612.
[132] Gaze MN, Chang Y-C, Flux GD, Mairs RJ, Saran FH, Meller ST. Feasibility of Dosimetry-Based High-Dose 131I-Meta-Iodobenzylguanidine with Topotecan as a Radiosensitizer in Children with Metastatic Neuroblastoma. Cancer Biotherapy & Radiopharmaceuticals 2005;20:195–199. https://doi.org/10.1089/cbr.2005.20.195.
[133] Vöö S, Bucerius J, Mottaghy FM. I-131-MIBG therapies. Methods 2011;55:238–245. https://doi.org/10.1016/j.ymeth.2011.10.006.
[134] Schmidt M, Simon T, Hero B, Eschner W, Dietlein M, Sudbrock F, et al. Is there a benefit of 131 I-MIBG therapy in the treatment of children with stage 4 neuroblastoma? A retrospective evaluation of The German Neuroblastoma Trial NB97 and implications for The German Neuroblastoma Trial NB2004. Nuklearmedizin Nuclear Medicine 2006;45:145–51; quiz N39–40.
[135] Solanki KK, Bomanji J, Moyes J, Mather SJ, Trainer PJ, Britton KE. A pharmacological guide to medicines which interfere with the biodistribution of radiolabelled meta-iodobenzylguanidine (MIBG). Nuclear Medicine Communications 1992;13:513–21.
[136] Gonias S, Goldsby R, Matthay KK, Hawkins R, Price D, Huberty J, et al. Phase II Study of High-Dose [131I]Metaiodobenzylguanidine Therapy for Patients With Metastatic Pheochromocytoma and Paraganglioma. Journal of Clinical Oncology 2009;27:4162–4168. https://doi.org/10.1200/JCO.2008.21.3496.
[137] George SL, Falzone N, Chittenden S, Kirk SJ, Lancaster D, Vaidya SJ, et al. Individualized 131I-mIBG therapy in the management of refractory and relapsed neuroblastoma. Nuclear Medicine Communications 2016;37:466–472. https://doi.org/10.1097/MNM.0000000000000470.
[138] Buckley SE, Saran FH, Gaze MN, Chittenden S, Partridge M, Lancaster D, et al. Dosimetry for Fractionated 131 I-mIBG Therapies in Patients with Primary Resistant High-Risk Neuroblastoma: Preliminary Results. Cancer Biotherapy & Radiopharmaceuticals 2007;22:105–112. https://doi.org/10.1089/cbr.2007.301.
[139] Sisson JC, Shapiro B, Beierwaltes WH, Glowniak JV, Nakajo M, Mangner TJ, et al. Radiopharmaceutical treatment of malignant pheochromocytoma. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 1984;25:197–206.
[140] Sudbrock F, Schmidt M, Simon T, Eschner W, Berthold F, Schicha H. Dosimetry for 131I-MIBG therapies in metastatic neuroblastoma, phaeochromocytoma and paraganglioma. European Journal of Nuclear Medicine and Molecular Imaging 2010;37:1279–1290. https://doi.org/10.1007/s00259-010-1391-7.
[141] Mínguez P, Flux G, Genollá J, Guayambuco S, Delgado A, Fombellida JC, et al. Dosimetric results in treatments of neuroblastoma and neuroendocrine tumors with 131I-metaiodobenzylguanidine with implications for the activity to administer. Medical Physics 2015;42:3969–3978. https://doi.org/10.1118/1.4921807.
[142] Matthay KK, Panina C, Huberty J, Price D, Glidden DV, Tang HR, et al. Correlation of tumor and whole-body dosimetry with tumor response and toxicity in refractory neuroblastoma treated with (131)I-MIBG. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2001;42:1713–21.
[143] Buckley SE, Chittenden SJ, Saran FH, Meller ST, Flux GD. Whole-Body Dosimetry for Individualized Treatment Planning of 131I-MIBG Radionuclide Therapy for Neuroblastoma. Journal of Nuclear Medicine 2009;50:1518–1524. https://doi.org/10.2967/jnumed.109.064469.
[144] Lashford LS, Lewis IJ, Fielding SL, Flower MA, Meller S, Kemshead JT, et al. Phase I/II study of iodine 131 metaiodobenzylguanidine in chemoresistant neuroblastoma: a United Kingdom Children’s Cancer Study Group investigation. Journal of Clinical Oncology 1992;10:1889–1896. https://doi.org/10.1200/JCO.1992.10.12.1889.
[145] Weiss B, Vora A, Huberty J, Hawkins RA, Matthay KK. Secondary Myelodysplastic Syndrome and Leukemia Following 131 I-Metaiodobenzylguanidine Therapy for Relapsed Neuroblastoma n.d.
[146] Kwekkeboom DJ, Krenning EP, Lebtahi R, Komminoth P, Kos-Kudła B, de Herder WW, et al. ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Peptide Receptor Radionuclide Therapy with Radiolabeled Somatostatin Analogs. Neuroendocrinology 2009;90:220–226. https://doi.org/10.1159/000225951.
[147] Yordanova A, Mayer K, Brossart P, Gonzalez-Carmona MA, Strassburg CP, Essler M, et al. Safety of multiple repeated cycles of 177Lu-octreotate in patients with recurrent neuroendocrine tumour. European Journal of Nuclear Medicine and Molecular Imaging 2017;44:1207–1214. https://doi.org/10.1007/s00259-017-3652-1.
[148] Sandström M, Garske U, Granberg D, Sundin A, Lundqvist H. Individualized dosimetry in patients undergoing therapy with 177Lu-DOTA-D-Phe1-Tyr3-octreotate. European Journal of Nuclear Medicine and Molecular Imaging 2010;37:212–225. https://doi.org/10.1007/s00259-009-1216-8.
[149] Ilan E, Sandstrom M, Wassberg C, Sundin A, Garske-Roman U, Eriksson B, et al. Dose Response of Pancreatic Neuroendocrine Tumors Treated with Peptide Receptor Radionuclide Therapy Using 177Lu-DOTATATE. Journal of Nuclear Medicine 2015;56:177–182. https://doi.org/10.2967/jnumed.114.148437.
[150] Kwekkeboom DJ, Teunissen JJ, Bakker WH, Kooij PP, de Herder WW, Feelders RA, et al. Radiolabeled Somatostatin Analog [Lu-DOTA 0,Tyr 3]Octreotate in Patients With Endocrine Gastroenteropancreatic Tumors. Journal of Clinical Oncology 2005;23:2754–2762. https://doi.org/10.1200/JCO.2005.08.066.
[151] Sundlöv A, Sjögreen-Gleisner K, Svensson J, Ljungberg M, Olsson T, Bernhardt P, et al. Individualised 177Lu-DOTATATE treatment of neuroendocrine tumours based on kidney dosimetry. European Journal of Nuclear Medicine and Molecular Imaging 2017;44:1480–1489. https://doi.org/10.1007/s00259-017-3678-4.
[152] Pavel M, O’Toole D, Costa F, Capdevila J, Gross D, Kianmanesh R, et al. ENETS Consensus Guidelines Update for the Management of Distant Metastatic Disease of Intestinal, Pancreatic, Bronchial Neuroendocrine Neoplasms (NEN) and NEN of Unknown Primary Site. Neuroendocrinology 2016;103:172–85. https://doi.org/10.1159/000443167.
[153] Sandstrom M, Garske-Roman U, Granberg D, Johansson S, Widstrom C, Eriksson B, et al. Individualized Dosimetry of Kidney and Bone Marrow in Patients Undergoing 177Lu-DOTA-Octreotate Treatment. Journal of Nuclear Medicine 2013;54:33–41. https://doi.org/10.2967/jnumed.112.107524.
[154] Garkavij M, Nickel M, Sjögreen-Gleisner K, Ljungberg M, Ohlsson T, Wing\a ardh K, et al. 177Lu-[DOTA0,Tyr3] octreotate therapy in patients with disseminated neuroendocrine tumors: Analysis of dosimetry with impact on future therapeutic strategy. Cancer 2010;116:1084–1092. https://doi.org/10.1002/cncr.24796.
[155] Bergsma H, Konijnenberg MW, Kam BLR, Teunissen JJM, Kooij PP, de Herder WW, et al. Subacute haematotoxicity after PRRT with 177Lu-DOTA-octreotate: prognostic factors, incidence and course. European Journal of Nuclear Medicine and Molecular Imaging 2016;43:453–463. https://doi.org/10.1007/s00259-015-3193-4.
[156] Bergsma H, van Lom K, Raaijmakers MHGP, Konijnenberg M, Kam BLBLR, Teunissen JJM, et al. Persistent Hematologic Dysfunction after Peptide Receptor Radionuclide Therapy with 177 Lu-DOTATATE: Incidence, Course, and Predicting Factors in Patients with Gastroenteropancreatic Neuroendocrine Tumors. Journal of Nuclear Medicine 2018;59:452–458. https://doi.org/10.2967/jnumed.117.189712.
[157] Bergsma H, Konijnenberg MW, van der Zwan WA, Kam BLR, Teunissen JJM, Kooij PP, et al. Nephrotoxicity after PRRT with 177Lu-DOTA-octreotate. European Journal of Nuclear Medicine and Molecular Imaging 2016;43:1802–1811. https://doi.org/10.1007/s00259-016-3382-9.
[158] Jamar F, Barone R, Mathieu I, Walrand S, Labar D, Carlier P, et al. 86Y-DOTA0-d-Phe1-Tyr3-octreotide (SMT487)—a phase 1 clinical study: pharmacokinetics, biodistribution and renal protective effect of different regimens of amino acid co-infusion. European Journal of Nuclear Medicine and Molecular Imaging 2003;30:510–518. https://doi.org/10.1007/s00259-003-1117-1.
[159] Minarik D, Sjögreen-Gleisner K, Linden O, Wing\a ardh K, Tennvall J, Strand S-E, et al. 90Y Bremsstrahlung imaging for absorbed-dose assessment in high-dose radioimmunotherapy. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2010;51:1974–8. https://doi.org/10.2967/jnumed.110.079897.
[160] Walrand S, Jamar F, Van Elmbt L, Lhommel R, Bidja ’a Bekonde E, Pauwels S. 4-Step Renal Dosimetry Dependent on Cortex Geometry Applied to 90 Y Peptide Receptor Radiotherapy: Evaluation Using a Fillable Kidney Phantom Imaged by 90 Y PET. J Nucl Med 2010;51:1969–1973. https://doi.org/10.2967/jnumed.110.080093.
[161] Bodei L, Cremonesi M, Ferrari M, Pacifici M, Grana CM, Bartolomei M, et al. Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors. Eur J Nucl Med Mol Imaging 2008;35:1847–56. https://doi.org/10.1007/s00259-008-0778-1.
[162] Walrand S, Jamar F, Mathieu I, Camps J, Lonneux M, Sibomana M, et al. Quantitation in PET using isotopes emitting prompt single gammas: application to yttrium-86. European Journal of Nuclear Medicine and Molecular Imaging 2003;30:354–361. https://doi.org/10.1007/s00259-002-1068-y.
[163] Kletting P, Müller B, Erentok B, Schmaljohann J, Behrendt FF, Reske SN, et al. Differences in predicted and actually absorbed doses in peptide receptor radionuclide therapy. Medical Physics 2012;39:5708–5717. https://doi.org/10.1118/1.4747266.
[164] Hindorf C, Chittenden S, Causer L, Lewington VJ, Mäcke HR, Flux GD. Dosimetry For 90Y-DOTATOC Therapies in Patients with Neuroendocrine Tumors. Cancer Biotherapy & Radiopharmaceuticals 2007;22:130–135. https://doi.org/10.1089/cbr.2007.306.
[165] Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, et al. Practical Dosimetry of Peptide Receptor Radionuclide Therapy with 90 Y-Labeled Somatostatin Analogs n.d.
[166] Bodei L, Kidd M, Paganelli G, Grana CM, Drozdov I, Cremonesi M, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. European Journal of Nuclear Medicine and Molecular Imaging 2015;42:5–19. https://doi.org/10.1007/s00259-014-2893-5.
[167] Binnebeek SV, Baete K, Vanbilloen B, Terwinghe C, Koole M, Mottaghy FM, et al. Individualized dosimetry-based activity reduction of 90 Y-DOTATOC prevents severe and rapid kidney function deterioration from peptide receptor radionuclide therapy. Eur J Nucl Med Mol Imaging n.d. https://doi.org/10.1007/s00259-013-2670-x.
[168] Valkema R, Pauwels SA, Kvols LK, Kwekkeboom DJ, Jamar F, de Jong M, et al. Long-term follow-up of renal function after peptide receptor radiation therapy with (90)Y-DOTA(0),Tyr(3)-octreotide and (177)Lu-DOTA(0), Tyr(3)-octreotate. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2005;46 Suppl 1:83S–91S.
[169] Walrand S, Barone R, Pauwels S, Jamar F. Experimental facts supporting a red marrow uptake due to radiometal transchelation in 90Y-DOTATOC therapy and relationship to the decrease of platelet counts. European Journal of Nuclear Medicine and Molecular Imaging 2011;38:1270–1280. https://doi.org/10.1007/s00259-011-1744-x.
[170] Villard L, Romer A, Marincek N, Brunner P, Koller MT, Schindler C, et al. Cohort Study of Somatostatin-Based Radiopeptide Therapy With [90 Y-DOTA]-TOC Versus [90 Y-DOTA]-TOC Plus [177 Lu-DOTA]-TOC in Neuroendocrine Cancers. Journal of Clinical Oncology 2012;30:1100–1106. https://doi.org/10.1200/JCO.2011.37.2151.
[171] Kunikowska J, Królicki L, Hubalewska-Dydejczyk A, Miko\lajczak R, Sowa-Staszczak A, Pawlak D. Clinical results of radionuclide therapy of neuroendocrine tumours with 90Y-DOTATATE and tandem 90Y/177Lu-DOTATATE: which is a better therapy option? European Journal of Nuclear Medicine and Molecular Imaging 2011;38:1788–1797. https://doi.org/10.1007/s00259-011-1833-x.
[172] Eckerman, K, Menzel, H. In the book of life, the answers aren’t in the back - Charlie Brown, fictional character of the Peanuts comic strip created by Charles Schulz: Annals of the ICRP 2008. https://doi.org/10.1016/j.icrp.2009.02.001.
[173] Pauwels S, Barone R, Walrand S, Borson-Chazot F, Valkema R, Kvols LK, et al. Practical Dosimetry of Peptide Receptor Radionuclide Therapy with 90Y-Labeled Somatostatin Analogs. J Nucl Med 2005;46:92S-98S.
[174] Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L, et al. Patient-specific dosimetry in predicting renal toxicity with (90)Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2005;46 Suppl 1:99S–106S.
[175] Riaz A, Gates VL, Atassi B, Lewandowski RJ, Mulcahy MF, Ryu RK, et al. Radiation Segmentectomy: A Novel Approach to Increase Safety and Efficacy of Radioembolization. International Journal of Radiation Oncology*Biology*Physics 2011;79:163–171. https://doi.org/10.1016/j.ijrobp.2009.10.062.
[176] Chiesa C, Mira M, Maccauro M, Spreafico C, Romito R, Morosi C, et al. Radioembolization of hepatocarcinoma with 90Y glass microspheres: development of an individualized treatment planning strategy based on dosimetry and radiobiology. European Journal of Nuclear Medicine and Molecular Imaging 2015;42:1718–1738. https://doi.org/10.1007/s00259-015-3068-8.
[177] Garin E, Lenoir L, Edeline J, Laffont S, Mesbah H, Porée P, et al. Boosted selective internal radiation therapy with 90Y-loaded glass microspheres (B-SIRT) for hepatocellular carcinoma patients: a new personalized promising concept. European Journal of Nuclear Medicine and Molecular Imaging 2013;40:1057–1068. https://doi.org/10.1007/s00259-013-2395-x.
[178] Strigari L, Sciuto R, Rea S, Carpanese L, Pizzi G, Soriani A, et al. Efficacy and Toxicity Related to Treatment of Hepatocellular Carcinoma with 90Y-SIR Spheres: Radiobiologic Considerations. Journal of Nuclear Medicine 2010;51:1377–1385. https://doi.org/10.2967/jnumed.110.075861.
[179] Flamen P, Vanderlinden B, Delatte P, Ghanem G, Ameye L, Van Den Eynde M, et al. Corrigendum: Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres (2008 Phys. Med. Biol. 53 6591–603). Physics in Medicine and Biology 2014;59:2549–2551. https://doi.org/10.1088/0031-9155/59/10/2549.
[180] van den Hoven AF, Rosenbaum CENM, Elias SG, de Jong HWAM, Koopman M, Verkooijen HM, et al. Insights into the Dose-Response Relationship of Radioembolization with Resin 90Y-Microspheres: A Prospective Cohort Study in Patients with Colorectal Cancer Liver Metastases. Journal of Nuclear Medicine 2016;57:1014–1019. https://doi.org/10.2967/jnumed.115.166942.
[181] Manceau V, Palard X, Rolland Y, Pracht M, Le Sourd S, Laffont S, et al. A MAA-based dosimetric study in patients with intrahepatic cholangiocarcinoma treated with a combination of chemotherapy and 90Y-loaded glass microsphere selective internal radiation therapy. Eur J Nucl Med Mol Imaging 2018;45:1731–41. https://doi.org/10.1007/s00259-018-3990-7.
[182] Lau WY, Leung WT, Ho S, Leung NW, Chan M, Lin J, et al. Treatment of inoperable hepatocellular carcinoma with intrahepatic arterial yttrium-90 microspheres: a phase I and II study. Br J Cancer 1994;70:994–9. https://doi.org/10.1038/bjc.1994.436.
[183] Garin E, Tzelikas L, Guiu B, Chalaye J, Edeline J, De Baere T, et al. Major impact of personalized dosimetry using 90Y loaded glass microspheres SIRT in HCC: Final overall survival analysis of a multicenter randomized phase II study (DOSISPHERE-01). JCO 2020;38:516–516. https://doi.org/10.1200/JCO.2020.38.4_suppl.516.
[184] Levillain H, Duran Derijckere I, Ameye L, Guiot T, Braat A, Meyer C, et al. Personalised radioembolization improves outcomes in refractory intra-hepatic cholangiocarcinoma: a multicenter study. Eur J Nucl Med Mol Imaging 2019;46:2270–9. https://doi.org/10.1007/s00259-019-04427-z.
[185] Gnesin S, Canetti L, Adib S, Cherbuin N, Silva Monteiro M, Bize P, et al. Partition Model-Based 99mTc-MAA SPECT/CT Predictive Dosimetry Compared with 90Y TOF PET/CT Posttreatment Dosimetry in Radioembolization of Hepatocellular Carcinoma: A Quantitative Agreement Comparison. Journal of Nuclear Medicine 2016;57:1672–1678. https://doi.org/10.2967/jnumed.116.173104.
[186] Salem R, Mazzaferro V, Sangro B. Yttrium 90 radioembolization for the treatment of hepatocellular carcinoma: Biological lessons, current challenges, and clinical perspectives. Hepatology 2013;58:2188–2197. https://doi.org/10.1002/hep.26382.
[187] Rosenbaum CENM, Verkooijen HM, Lam MGEH, Smits MLJ, Koopman M, van Seeters T, et al. Radioembolization for Treatment of Salvage Patients with Colorectal Cancer Liver Metastases: A Systematic Review. Journal of Nuclear Medicine 2013;54:1890–1895. https://doi.org/10.2967/jnumed.113.119545.
[188] Cremonesi M, Chiesa C, Strigari L, Ferrari M, Botta F, Guerriero F, et al. Radioembolization of Hepatic Lesions from a Radiobiology and Dosimetric Perspective. Frontiers in Oncology 2014;4:210. https://doi.org/10.3389/fonc.2014.00210.
[189] Monsieurs MA, Bacher K, Brans B, Vral A, Ridder L, Dierckx RA, et al. Patient dosimetry for 131I-lipiodol therapy. European Journal of Nuclear Medicine and Molecular Imaging 2003;30:554–561. https://doi.org/10.1007/s00259-002-1108-7.
[190] Cicone F, Russo E, Carpaneto A, Prior JO, Delaloye AB, Scopinaro F, et al. Follicular lymphoma at relapse after rituximab containing regimens: comparison of time to event intervals prior to and after 90Y-ibritumomab-tiuxetan. Hematological Oncology 2011;29:131–8. https://doi.org/10.1002/hon.968.
[191] Buchegger F, Prior JO, Allenbach G, Baechler S, Kosinski M, Helg C, et al. Longer Intervals Between Hematopoietic Stem Cell Transplantation and Subsequent 90Y-Ibritumomab Radioimmunotherapy May Correlate With Better Tolerance. Clinical Nuclear Medicine 2012;37:960–964. https://doi.org/10.1097/RLU.0b013e318251e3af.
[192] Cooney-Qualter E, Krailo M, Angiolillo A, Fawwaz RA, Wiseman G, Harrison L, et al. A phase I study of 90yttrium-ibritumomab-tiuxetan in children and adolescents with relapsed/refractory CD20-positive non-Hodgkin’s lymphoma: a Children’s Oncology Group study. Clin Cancer Res 2007;13:5652s–60s. https://doi.org/10.1158/1078-0432.CCR-07-1060.
[193] Aricò D, Grana CM, Vanazzi A, Ferrari M, Mallia A, Sansovini M, et al. The role of dosimetry in the high activity 90Y-ibritumomab tiuxetan regimens: Two cases of abnormal biodistribution. Cancer Biotherapy & Radiopharmaceuticals 2009;24:271–5. https://doi.org/10.1089/cbr.2008.0541.
[194] Assié K, Dieudonné A, Gardin I, Buvat I, Tilly H, Vera P. Comparison Between 2D and 3D Dosimetry Protocols in 90 Y-Ibritumomab Tiuxetan Radioimmunotherapy of Patients with Non-Hodgkin’s Lymphoma. Cancer Biotherapy & Radiopharmaceuticals 2008;23:53–64. https://doi.org/10.1089/cbr.2007.372.
[195] Ferrer L, Malek E, Bodet-Milin C, Legouill S, Prangère T, Robu D, et al. Comparisons of dosimetric approaches for fractionated radioimmunotherapy of non-Hodgkin lymphoma. The Quarterly Journal of Nuclear Medicine and Molecular Imaging : Official Publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society Of. 2012;56:529–37.
[196] Wiseman GA, Kornmehl E, Leigh B, Erwin WD, Podoloff DA, Spies S, et al. Radiation dosimetry results and safety correlations from 90Y-ibritumomab tiuxetan radioimmunotherapy for relapsed or refractory non-Hodgkin’s lymphoma: combined data from 4 clinical trials. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2003;44:465–74.
[197] Dewaraja YK, Schipper MJ, Shen J, Smith LB, Murgic J, Savas H, et al. Tumor-Absorbed Dose Predicts Progression-Free Survival Following 131I-Tositumomab Radioimmunotherapy. Journal of Nuclear Medicine 2014;55:1047–1053. https://doi.org/10.2967/jnumed.113.136044.
[198] Cicone F, D’Arienzo M, Carpaneto A, Russo E, Coniglio A, Bischof Delaloye A, et al. Quantification of Dose Nonuniformities by Voxel-Based Dosimetry in Patients Receiving 90 Y-Ibritumomab-Tiuxetan. Cancer Biotherapy & Radiopharmaceuticals 2013;28:98–107. https://doi.org/10.1089/cbr.2012.1299.
[199] Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R, et al. Randomized Controlled Trial of Yttrium-90–Labeled Ibritumomab Tiuxetan Radioimmunotherapy Versus Rituximab Immunotherapy for Patients With Relapsed or Refractory Low-Grade, Follicular, or Transformed B-Cell Non-Hodgkin’s Lymphoma. Journal of Clinical Oncology 2002;20:2453–2463. https://doi.org/10.1200/JCO.2002.11.076.
[200] Cremonesi M, Ferrari M, Grana CM, Vanazzi A, Stabin M, Bartolomei M, et al. High-dose radioimmunotherapy with 90Y-ibritumomab tiuxetan: comparative dosimetric study for tailored treatment. J Nucl Med 2007;48:1871–9. https://doi.org/10.2967/jnumed.107.044016.
[201] Scholz CW, Pinto A, Linkesch W, Lindén O, Viardot A, Keller U, et al. 90 Yttrium-Ibritumomab-Tiuxetan as First-Line Treatment for Follicular Lymphoma: 30 Months of Follow-Up Data From an International Multicenter Phase II Clinical Trial. Journal of Clinical Oncology 2013;31:308–313. https://doi.org/10.1200/JCO.2011.41.1553.
[202] Illidge TM, Mayes S, Pettengell R, Bates AT, Bayne M, Radford JA, et al. Fractionated 90Y-Ibritumomab Tiuxetan Radioimmunotherapy As an Initial Therapy of Follicular Lymphoma: An International Phase II Study in Patients Requiring Treatment According to GELF/BNLI Criteria. Journal of Clinical Oncology 2014;32:212–218. https://doi.org/10.1200/JCO.2013.50.3110.
[203] Witzig TE, White CA, Gordon LI, Wiseman GA, Emmanouilides C, Murray JL, et al. Safety of yttrium-90 ibritumomab tiuxetan radioimmunotherapy for relapsed low-grade, follicular, or transformed non-hodgkin’s lymphoma. J Clin Oncol 2003;21:1263–70. https://doi.org/10.1200/JCO.2003.08.043.
[204] Ahmadzadehfar H, Eppard E, Kürpig S, Fimmers R, Yordanova A, Schlenkhoff CD, et al. Therapeutic response and side effects of repeated radioligand therapy with 177Lu-PSMA-DKFZ-617 of castrate-resistant metastatic prostate cancer. Oncotarget 2016;7:12477–12488. https://doi.org/10.18632/oncotarget.7245.
[205] Baum RP, Kulkarni HR, Schuchardt C, Singh A, Wirtz M, Wiessalla S, et al. 177Lu-Labeled Prostate-Specific Membrane Antigen Radioligand Therapy of Metastatic Castration-Resistant Prostate Cancer: Safety and Efficacy. Journal of Nuclear Medicine 2016;57:1006–1013. https://doi.org/10.2967/jnumed.115.168443.
[206] Kratochwil C, Giesel FL, Stefanova M, Bene ova M, Bronzel M, Afshar-Oromieh A, et al. PSMA-Targeted Radionuclide Therapy of Metastatic Castration-Resistant Prostate Cancer with 177Lu-Labeled PSMA-617. Journal of Nuclear Medicine 2016;57:1170–1176. https://doi.org/10.2967/jnumed.115.171397.
[207] Kabasakal L, AbuQbeitah M, Aygün A, Yeyin N, Ocak M, Demirci E, et al. Pre-therapeutic dosimetry of normal organs and tissues of 177Lu-PSMA-617 prostate-specific membrane antigen (PSMA) inhibitor in patients with castration-resistant prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging 2015;42:1976–1983. https://doi.org/10.1007/s00259-015-3125-3.
[208] Rahbar K, Ahmadzadehfar H, Kratochwil C, Haberkorn U, Schäfers M, Essler M, et al. German Multicenter Study Investigating 177Lu-PSMA-617 Radioligand Therapy in Advanced Prostate Cancer Patients. Journal of Nuclear Medicine 2017;58:85–90. https://doi.org/10.2967/jnumed.116.183194.
[209] Fendler WP, Reinhardt S, Ilhan H, Delker A, Böning G, Gildehaus FJ, et al. Preliminary experience with dosimetry, response and patient reported outcome after 177Lu-PSMA-617 therapy for metastatic castration-resistant prostate cancer. Oncotarget 2015;8:3581–3590. https://doi.org/10.18632/oncotarget.12240.
[210] Yadav MP, Ballal S, Tripathi M, Damle NA, Sahoo RK, Seth A, et al. 177Lu-DKFZ-PSMA-617 therapy in metastatic castration resistant prostate cancer: safety, efficacy, and quality of life assessment. European Journal of Nuclear Medicine and Molecular Imaging 2017;44:81–91. https://doi.org/10.1007/s00259-016-3481-7.
[211] Delker A, Fendler WP, Kratochwil C, Brunegraf A, Gosewisch A, Gildehaus FJ, et al. Dosimetry for 177Lu-DKFZ-PSMA-617: a new radiopharmaceutical for the treatment of metastatic prostate cancer. European Journal of Nuclear Medicine and Molecular Imaging 2016;43:42–51. https://doi.org/10.1007/s00259-015-3174-7.
[212] Hohberg M, Eschner W, Schmidt M, Dietlein M, Kobe C, Fischer T, et al. Lacrimal Glands May Represent Organs at Risk for Radionuclide Therapy of Prostate Cancer with [177Lu]DKFZ-PSMA-617. Molecular Imaging and Biology 2016;18:437–445. https://doi.org/10.1007/s11307-016-0942-0.
[213] Morgenstern A, Apostolidis C, Kratochwil C, Sathekge M, Krolicki L, Bruchertseifer F. An Overview of Targeted Alpha Therapy with 225Actinium and 213Bismuth. Curr Radiopharm 2018;11:200–8. https://doi.org/10.2174/1874471011666180502104524.
[214] Beheshti M, Heinzel A, von Mallek D, Filss C, Mottaghy FM. Prostate-specific membrane antigen radioligand therapy of prostate cancer. Q J Nucl Med Mol Imaging 2019;63:29–36. https://doi.org/10.23736/S1824-4785.19.03155-8.
[215] Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, et al. 225Ac-PSMA-617 for PSMA targeting alpha-radiation therapy of patients with metastatic castration-resistant prostate cancer. J Nucl Med 2016:jnumed.116.178673. https://doi.org/10.2967/jnumed.116.178673.
[216] Kratochwil C, Bruchertseifer F, Rathke H, Bronzel M, Apostolidis C, Weichert W, et al. Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with 225Ac-PSMA-617: Dosimetry Estimate and Empiric Dose Finding. J Nucl Med 2017;58:1624–31. https://doi.org/10.2967/jnumed.117.191395.
[217] Sathekge M, Bruchertseifer F, Knoesen O, Reyneke F, Lawal I, Lengana T, et al. 225Ac-PSMA-617 in chemotherapy-naive patients with advanced prostate cancer: a pilot study. Eur J Nucl Med Mol Imaging 2019;46:129–38. https://doi.org/10.1007/s00259-018-4167-0.
[218] Kratochwil C, Bruchertseifer F, Rathke H, Hohenfellner M, Giesel FL, Haberkorn U, et al. Targeted α-Therapy of Metastatic Castration-Resistant Prostate Cancer with 225Ac-PSMA-617: Swimmer-Plot Analysis Suggests Efficacy Regarding Duration of Tumor Control. J Nucl Med 2018;59:795–802. https://doi.org/10.2967/jnumed.117.203539.
[219] Valdés Olmos RA, Vidal-Sicart S, Manca G, Mariani G, León-Ramírez LF, Rubello D, et al. Advances in radioguided surgery in oncology. Q J Nucl Med Mol Imaging 2017;61:247–70. https://doi.org/10.23736/S1824-4785.17.02995-8.
[220] Meershoek P, Buckle T, van Oosterom MN, KleinJan GH, van der Poel HG, van Leeuwen FWB. Can Intraoperative Fluorescence Imaging Identify All Lesions While the Road Map Created by Preoperative Nuclear Imaging Is Masked? J Nucl Med 2020;61:834–41. https://doi.org/10.2967/jnumed.119.235234.
[221] Bunschoten, A, van den Berg, N, Valdés Olmos , R, Blockland, J, van Leeuwen, F. Tracers Applied in Radioguided surgery. Current Applications and Innovative Directions in Clinical Practice, Switzerland: Springer; 2016, p. 75–101.
[222] Van Den Berg NS, Buckle T, Kleinjan GI, Klop WM, Horenblas S, Van Der Poel HG, et al. Hybrid tracers for sentinel node biopsy. Q J Nucl Med Mol Imaging 2014;58:193–206.
[223] Van Oosterom MN, Rietbergen DDD, Welling MM, Van Der Poel HG, Maurer T, Van Leeuwen FWB. Recent advances in nuclear and hybrid detection modalities for image-guided surgery. Expert Rev Med Devices 2019;16:711–34. https://doi.org/10.1080/17434440.2019.1642104.
[224] Povoski SP, Neff RL, Mojzisik CM, O’Malley DM, Hinkle GH, Hall NC, et al. A comprehensive overview of radioguided surgery using gamma detection probe technology. World J Surg Oncol 2009;7:11. https://doi.org/10.1186/1477-7819-7-11.
[225] Harrison C, Rodrigues JN, Cassell O. Inter-operator variability in the sensitivity of sentinel lymph node biopsy for melanoma. J Plast Reconstr Aesthet Surg 2018;71:1816–34. https://doi.org/10.1016/j.bjps.2018.07.034.
[226] Giammarile F, Alazraki N, Aarsvold JN, Audisio RA, Glass E, Grant SF, et al. The EANM and SNMMI practice guideline for lymphoscintigraphy and sentinel node localization in breast cancer. Eur J Nucl Med Mol Imaging 2013;40:1932–47. https://doi.org/10.1007/s00259-013-2544-2.
[227] Law M, Ma W-H, Leung R, Li S, Wong K-K, Ho W-Y, et al. Evaluation of patient effective dose from sentinel lymph node lymphoscintigraphy in breast cancer: A phantom study with SPECT/CT and ICRP-103 recommendations. European Journal of Radiology 2012;81:e717–20. https://doi.org/10.1016/j.ejrad.2012.01.035.
[228] KleinJan GH, Bunschoten A, van den Berg NS, Olmos RAV, Klop WMC, Horenblas S, et al. Fluorescence guided surgery and tracer-dose, fact or fiction? Eur J Nucl Med Mol Imaging 2016;43:1857–67. https://doi.org/10.1007/s00259-016-3372-y.
[229] Heuveling DA, Karagozoglu KH, Van Lingen A, Hoekstra OS, Van Dongen GAMS, De Bree R. Feasibility of intraoperative detection of sentinel lymph nodes with 89-zirconium-labelled nanocolloidal albumin PET-CT and a handheld high-energy gamma probe. EJNMMI Res 2018;8. https://doi.org/10.1186/s13550-018-0368-6.
[230] Manca G, Mazzarri S, Rubello D, Tardelli E, Delgado-Bolton RC, Giammarile F, et al. Radioguided Occult Lesion Localization: Technical Procedures and Clinical Applications. Clinical Nuclear Medicine 2017;42:e498. https://doi.org/10.1097/RLU.0000000000001858.
[231] Niinikoski L, Hukkinen K, Leidenius MHK, Vaara P, Voynov A, Heikkilä P, et al. Resection margins and local recurrences of impalpable breast cancer: Comparison between radioguided occult lesion localization (ROLL) and radioactive seed localization (RSL). Breast 2019;47:93–101. https://doi.org/10.1016/j.breast.2019.07.004.
[232] Buicko JL, Kichler KM, Amundson JR, Scurci S, Kozol RA. The Sestamibi Paradox: Improving Intraoperative Localization of Parathyroid Adenomas. Am Surg 2017;83:832–5. https://doi.org/10.1177/000313481708300831.
[233] Urhan M, Dadparvar S, Mavi A, Houseni M, Chamroonrat W, Alavi A, et al. Iodine-123 as a diagnostic imaging agent in differentiated thyroid carcinoma: a comparison with iodine-131 post-treatment scanning and serum thyroglobulin measurement. Eur J Nucl Med Mol Imaging 2007;34:1012–7. https://doi.org/10.1007/s00259-006-0341-x.
[234] García-Talavera P, Ruano R, Rioja ME, Cordero JM, Razola P, Vidal-Sicart S. [Radioguided surgery in neuroendocrine tumors. A review of the literature]. Rev Esp Med Nucl Imagen Mol 2014;33:358–65. https://doi.org/10.1016/j.remn.2014.07.004.
[235] Chiang J Tyng MFAA, Augusto AG Berg MSM. Computed tomography-guided percutaneous core needle biopsy in pancreatic tumor diagnosis. World Journal of Gastroenterology 2015;21:3579–86. https://doi.org/10.3748/wjg.v21.i12.3579.
[236] Horn T, Krönke M, Rauscher I, Haller B, Robu S, Wester H-J, et al. Single Lesion on Prostate-specific Membrane Antigen-ligand Positron Emission Tomography and Low Prostate-specific Antigen Are Prognostic Factors for a Favorable Biochemical Response to Prostate-specific Membrane Antigen-targeted Radioguided Surgery in Recurrent Prostate Cancer. Eur Urol 2019;76:517–23. https://doi.org/10.1016/j.eururo.2019.03.045.
[237] Kouri BE. Interventional Oncology: Optimizing Transarterial Therapies for the Treatment of Hepatic Malignancy. Tech Vasc Interv Radiol 2018;21:205–22. https://doi.org/10.1053/j.tvir.2018.07.002.
[238] Cerci JJ, Tabacchi E, Bogoni M, Delbeke D, Pereira CC, Cerci RJ, et al. Comparison of CT and PET/CT for biopsy guidance in oncological patients. Eur J Nucl Med Mol Imaging 2017;44:1269–74. https://doi.org/10.1007/s00259-017-3658-8.
[239] Cornelis F, Silk M, Schoder H, Takaki H, Durack JC, Erinjeri JP, et al. Performance of intra-procedural 18-fluorodeoxyglucose PET/CT-guided biopsies for lesions suspected of malignancy but poorly visualized with other modalities. Eur J Nucl Med Mol Imaging 2014;41:2265–72. https://doi.org/10.1007/s00259-014-2852-1.
[240] Telo S, Farolfi A, Castellucci P, Fanti S. 68Ga-PSMA-11 PET accuracy in recurrent prostate cancer. Transl Androl Urol 2019;8:772–4. https://doi.org/10.21037/tau.2019.07.13.
[241] Gulec SA, Daghighian F, Essner R. PET-Probe: Evaluation of Technical Performance and Clinical Utility of a Handheld High-Energy Gamma Probe in Oncologic Surgery. Ann Surg Oncol 2016;23:9020–7. https://doi.org/10.1245/ASO.2006.05.047.
[242] El Lakis M, Gianakou A, Nockel P, Wiseman D, Tirosh A, Quezado MA, et al. Radioguided Surgery With Gallium 68 Dotatate for Patients With Neuroendocrine Tumors. JAMA Surg 2019;154:40–5. https://doi.org/10.1001/jamasurg.2018.3475.
[243] Ryan ER, Thornton R, Sofocleous CT, Erinjeri JP, Hsu M, Quinn B, et al. PET/CT-guided interventions: personnel radiation dose. Cardiovasc Intervent Radiol 2013;36:1063–7. https://doi.org/10.1007/s00270-012-0515-9.
[244] Russomando A, Schiariti M, Bocci V, Colandrea M, Collamati F, Cremonesi M, et al. The β- radio-guided surgery: Method to estimate the minimum injectable activity from ex-vivo test. Phys Med 2019;58:114–20. https://doi.org/10.1016/j.ejmp.2019.02.004.
[245] Maurer T, Graefen M, Poel H van der, Hamdy F, Briganti A, Eiber M, et al. Prostate-specific membrane antigen guided surgery. J Nucl Med 2019:jnumed.119.232330. https://doi.org/10.2967/jnumed.119.232330.
[246] van Leeuwen FWB, Schottelius M, Brouwer OR, Vidal-Sicart S, Achilefu S, Klode J, et al. Trending: Radioactive and Fluorescent Bimodal/Hybrid Tracers as Multiplexing Solutions for Surgical Guidance. J Nucl Med 2020;61:13–9. https://doi.org/10.2967/jnumed.119.228684.
[247] van Oosterom MN, Meershoek P, Welling MM, Pinto F, Matthies P, Simon H, et al. Extending the Hybrid Surgical Guidance Concept With Freehand Fluorescence Tomography. IEEE Trans Med Imaging 2020;39:226–35. https://doi.org/10.1109/TMI.2019.2924254.
[248] Schottelius M, Wurzer A, Wissmiller K, Beck R, Koch M, Gorpas D, et al. Synthesis and Preclinical Characterization of the PSMA-Targeted Hybrid Tracer PSMA-I&F for Nuclear and Fluorescence Imaging of Prostate Cancer. J Nucl Med 2019;60:71–8. https://doi.org/10.2967/jnumed.118.212720.