[1] ICRP. ICRP Publication 53. Radiation dose to patients from radiopharmaceuticals. Annals ICRP 1988;18.
[2] ICRP. ICRP Publication 106. Radiation Dose to Patients from Radiopharmaceuticals - Addendum 3 to ICRP Publication 53. Annals ICRP 2008;38.
[3] Mattsson S, Johansson L, Leide Svegborn S, Liniecki J, Noßke D, Riklund KÅ, et al. ICRP Publication 128: Radiation Dose to Patients from Radiopharmaceuticals: a Compendium of Current Information Related to Frequently Used Substances. Ann ICRP 2015;44:7–321. https://doi.org/10.1177/0146645314558019.
[4] McArdle B, Dowsley TF, Cocker MS, Ohira H, deKemp RA, DaSilva J, et al. Cardiac PET: metabolic and functional imaging of the myocardium. Semin Nucl Med 2013;43:434–48. https://doi.org/10.1053/j.semnuclmed.2013.06.001.
[5] Agostini D, Marie P-Y, Ben-Haim S, Rouzet F, Songy B, Giordano A, et al. Performance of cardiac cadmium-zinc-telluride gamma camera imaging in coronary artery disease: a review from the cardiovascular committee of the European Association of Nuclear Medicine (EANM). Eur J Nucl Med Mol I 2016;43:2423–32. https://doi.org/10.1007/s00259-016-3467-5.
[6] Agostini D, Roule V, Nganoa C, Roth N, Baavour R, Parienti J-J, et al. First validation of myocardial flow reserve assessed by dynamic 99mTc-sestamibi CZT-SPECT camera: head to head comparison with 15O-water PET and fractional flow reserve in patients with suspected coronary artery disease. The WATERDAY study. Eur J Nucl Med Mol Imaging 2018;45:1079–90. https://doi.org/10.1007/s00259-018-3958-7.
[7] Machac J. Cardiac positron emission tomography imaging. Seminars in Nuclear Medicine 2005;35:17–36. https://doi.org/10.1053/j.semnuclmed.2004.09.002.
[8] Di Carli MF, Hachamovitch R. New Technology for Noninvasive Evaluation of Coronary Artery Disease. Circulation 2007;115:1464–1480. https://doi.org/10.1161/CIRCULATIONAHA.106.629808.
[9] Dorbala S, Vangala D, Sampson U, Limaye A, Kwong R, Di Carli MF. Value of vasodilator left ventricular ejection fraction reserve in evaluating the magnitude of myocardium at risk and the extent of angiographic coronary artery disease: a 82Rb PET/CT study. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2007;48:349–58.
[10] Lertsburapa K, Ahlberg AW, Bateman TM, Katten D, Volker L, Cullom SJ, et al. Independent and incremental prognostic value of left ventricular ejection fraction determined by stress gated rubidium 82 PET imaging in patients with known or suspected coronary artery disease. Journal of Nuclear Cardiology 2008;15:745–753. https://doi.org/10.1007/BF03007355.
[11] Le Guludec D, Lautamäki R, Knuuti J, Bax JJ, Bengel FM, European Council of Nuclear Cardiology. Present and future of clinical cardiovascular PET imaging in Europe—a position statement by the European Council of Nuclear Cardiology (ECNC). European Journal of Nuclear Medicine and Molecular Imaging 2008;35:1709–1724. https://doi.org/10.1007/s00259-008-0859-1.
[12] Andersson M, Johansson L, Minarik D, Leide-Svegborn S, Mattsson S. Effective dose to adult patients from 338 radiopharmaceuticals estimated using ICRP biokinetic data, ICRP/ICRU computational reference phantoms and ICRP 2007 tissue weighting factors. EJNMMI Phys 2014;1:9. https://doi.org/10.1186/2197-7364-1-9.
[13] Monroy-Gonzalez AG, Juarez-Orozco LE, Han C, Vedder IR, García DV, Borra R, et al. Software reproducibility of myocardial blood flow and flow reserve quantification in ischemic heart disease: A 13N-ammonia PET study. J Nucl Cardiol 2019. https://doi.org/10.1007/s12350-019-01620-3.
[14] Munari M, Zucchetta P, Carollo C, Gallo F, De Nardin M, Marzola MC, et al. Confirmatory tests in the diagnosis of brain death: Comparison between SPECT and contrast angiography. Critical Care Medicine 2005;33:2068–2073. https://doi.org/10.1097/01.CCM.0000179143.19233.6A.
[15] Verberne, H, Hesse, B. EANM procedural guidelines for radionuclide myocardial perfusion imaging with SPECT and SPECT/CT 2015. https://eanm.org/publications/guidelines/2015_07_EANM_FINAL_myocardial_perfusion_guideline.pdf (accessed July 12, 2020).
[16] Authors/Task Force members, Windecker S, Kolh P, Alfonso F, Collet J-P, Cremer J, et al. 2014 ESC/EACTS Guidelines on myocardial revascularization. European Heart Journal 2014;35:2541–2619. https://doi.org/10.1093/eurheartj/ehu278.
[17] Hesse B, Lindhardt TB, Acampa W, Anagnostopoulos C, Ballinger J, Bax JJ, et al. EANM/ESC guidelines for radionuclide imaging of cardiac function. Eur J Nucl Med Mol Imaging 2008;35:851–85. https://doi.org/10.1007/s00259-007-0694-9.
[18] Farrell MB, Galt JR, Georgoulias P, Malhotra S, Pagnanelli R, Rischpler C, et al. SNMMI Procedure Standard/EANM Guideline for Gated Equilibrium Radionuclide Angiography*. J Nucl Med Technol 2020;48:126–35. https://doi.org/10.2967/jnmt.120.246405.
[19] Taegtmeyer H. Tracing Cardiac Metabolism in vivo: One Substrate at a Time. J Nucl Med 2010;51:80S-87S. https://doi.org/10.2967/jnumed.109.068205.
[20] Wisneski JA, Gertz EW, Neese RA, Mayr M. Myocardial metabolism of free fatty acids. Studies with 14C-labeled substrates in humans. J Clin Invest 1987;79:359–66. https://doi.org/10.1172/JCI112820.
[21] Slart RHJA, Glaudemans AWJM, Lancellotti P, Hyafil F, Blankstein R, Schwartz RG, et al. A joint procedural position statement on imaging in cardiac sarcoidosis: from the Cardiovascular and Inflammation & Infection Committees of the European Association of Nuclear Medicine, the European Association of Cardiovascular Imaging, and the American Society of Nuclear Cardiology. J Nucl Cardiol 2018;25:298–319. https://doi.org/10.1007/s12350-017-1043-4.
[22] Dilsizian V, Bacharach SL, Beanlands RS, Bergmann SR, Delbeke D, Dorbala S, et al. ASNC imaging guidelines/SNMMI procedure standard for positron emission tomography (PET) nuclear cardiology procedures. J Nucl Cardiol 2016;23:1187–226. https://doi.org/10.1007/s12350-016-0522-3.
[23] Pepys MB, Dyck RF, de Beer FC, Skinner M, Cohen AS. Binding of serum amyloid P-component (SAP) by amyloid fibrils. Clin Exp Immunol 1979;38:284–93.
[24] Suhr OB, Lundgren E, Westermark P. One mutation, two distinct disease variants: unravelling the impact of transthyretin amyloid fibril composition. J Intern Med 2017;281:337–47. https://doi.org/10.1111/joim.12585.
[25] Gillmore JD, Maurer MS, Falk RH, Merlini G, Damy T, Dispenzieri A, et al. Nonbiopsy Diagnosis of Cardiac Transthyretin Amyloidosis. Circulation 2016;133:2404–12. https://doi.org/10.1161/CIRCULATIONAHA.116.021612.
[26] Hutt DF, Gilbertson J, Quigley A-M, Wechalekar AD. (99m)Tc-DPD scintigraphy as a novel imaging modality for identification of skeletal muscle amyloid deposition in light-chain amyloidosis. Amyloid 2016;23:134–5. https://doi.org/10.3109/13506129.2016.1158160.
[27] Bach‐Gansmo T, Wien TN, Løndalen A, Halvorsen E. Myocardial uptake of bone scintigraphic agents associated with increased pulmonary uptake. Clinical Physiology and Functional Imaging 2016;36:237–41. https://doi.org/10.1111/cpf.12219.
[28] Falk RH, Comenzo RL, Skinner M. The systemic amyloidoses. N Engl J Med 1997;337:898–909. https://doi.org/10.1056/NEJM199709253371306.
[29] Perugini E, Guidalotti PL, Salvi F, Cooke RMT, Pettinato C, Riva L, et al. Noninvasive etiologic diagnosis of cardiac amyloidosis using 99mTc-3,3-diphosphono-1,2-propanodicarboxylic acid scintigraphy. J Am Coll Cardiol 2005;46:1076–84. https://doi.org/10.1016/j.jacc.2005.05.073.
[30] Treglia G, Glaudemans AWJM, Bertagna F, Hazenberg BPC, Erba PA, Giubbini R, et al. Diagnostic accuracy of bone scintigraphy in the assessment of cardiac transthyretin-related amyloidosis: a bivariate meta-analysis. Eur J Nucl Med Mol Imaging 2018;45:1945–55. https://doi.org/10.1007/s00259-018-4013-4.
[31] Dorbala S, Ando Y, Bokhari S, Dispenzieri A, Falk RH, Ferrari VA, et al. ASNC/AHA/ASE/EANM/HFSA/ISA/SCMR/SNMMI expert consensus recommendations for multimodality imaging in cardiac amyloidosis: Part 2 of 2-Diagnostic criteria and appropriate utilization. J Nucl Cardiol 2020;27:659–73. https://doi.org/10.1007/s12350-019-01761-5.
[32] Manrique A, Dudoignon D, Brun S, N’Ganoa C, Cassol E, Legallois D, et al. Quantification of myocardial 99mTc-labeled bisphosphonate uptake with cadmium zinc telluride camera in patients with transthyretin-related cardiac amyloidosis. EJNMMI Res 2019;9. https://doi.org/10.1186/s13550-019-0584-8.
[33] Chirumamilla A, Travin MI. Cardiac applications of 123I-mIBG imaging. Semin Nucl Med 2011;41:374–87. https://doi.org/10.1053/j.semnuclmed.2011.04.001.
[34] Jacobson AF, Senior R, Cerqueira MD, Wong ND, Thomas GS, Lopez VA, et al. Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 2010;55:2212–21. https://doi.org/10.1016/j.jacc.2010.01.014.
[35] Sciammarella MG, Gerson M, Buxton AE, Bartley SC, Doukky R, Merlino DA, et al. ASNC/SNMMI Model Coverage Policy: Myocardial sympathetic innervation imaging: Iodine-123 meta-iodobenzylguanidine ((123)I-mIBG). J Nucl Cardiol 2015;22:804–11. https://doi.org/10.1007/s12350-015-0202-8.
[36] Travin MI, Henzlova MJ, van Eck-Smit BLF, Jain D, Carrió I, Folks RD, et al. Assessment of 123I-mIBG and 99mTc-tetrofosmin single-photon emission computed tomographic images for the prediction of arrhythmic events in patients with ischemic heart failure: Intermediate severity innervation defects are associated with higher arrhythmic risk. J Nucl Cardiol 2017;24:377–91. https://doi.org/10.1007/s12350-015-0336-8.
[37] Orimo S, Yogo M, Nakamura T, Suzuki M, Watanabe H. (123)I-meta-iodobenzylguanidine (MIBG) cardiac scintigraphy in α-synucleinopathies. Ageing Res Rev 2016;30:122–33. https://doi.org/10.1016/j.arr.2016.01.001.
[38] Flotats A, Carrió I, Agostini D, Le Guludec D, Marcassa C, Schaffers M, et al. Proposal for standardization of 123I-metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM Cardiovascular Committee and the European Council of Nuclear Cardiology. European Journal of Nuclear Medicine and Molecular Imaging 2010;37:1802–1812. https://doi.org/10.1007/s00259-010-1491-4.
[39] Tobes MC, Fig LM, Carey J, Geatti O, Sisson JC, Shapiro B. Alterations of iodine-131 MIBG biodistribution in an anephric patient: comparison to normal and impaired renal function. J Nucl Med 1989;30:1476–82.
[40] Taïeb D, Hicks RJ, Hindié E, Guillet BA, Avram A, Ghedini P, et al. European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur J Nucl Med Mol Imaging 2019;46:2112–37. https://doi.org/10.1007/s00259-019-04398-1.
[41] Bonetti MG, Ciritella P, Valle G, Perrone E. 99mTc HM-PAO brain perfusion SPECT in brain death. Neuroradiology 1995;37:365–9.
[42] Facco E, Zucchetta P, Munari M, Baratto F, Behr A, Gregianin M, et al. 99mTc-HMPAO SPECT in the diagnosis of brain death. Intensive Care Medicine 1998;24:911–917.
[43] Banzo J, Razola P, Araíz JJ, Larraga J, Tardín L, Andrés A, et al. El estudio gammagráfico de perfusión cerebral como prueba de confirmación de muerte encefálica en el proceso de donación de órganos para trasplante. Revista Española de Medicina Nuclear e Imagen Molecular 2012;31:278–285. https://doi.org/10.1016/J.REMN.2012.03.013.
[44] Zaknun JJ, Bal C, Maes A, Tepmongkol S, Vazquez S, Dupont P, et al. Comparative analysis of MR imaging, Ictal SPECT and EEG in temporal lobe epilepsy: a prospective IAEA multi-center study. European Journal of Nuclear Medicine and Molecular Imaging 2008;35:107–115. https://doi.org/10.1007/s00259-007-0526-y.
[45] Patil S, Biassoni L, Borgwardt L. Nuclear Medicine in Pediatric Neurology and Neurosurgery: Epilepsy and Brain Tumors. Seminars in Nuclear Medicine 2007;37:357–381. https://doi.org/10.1053/j.semnuclmed.2007.04.002.
[46] Jones AL, Cascino GD. Evidence on Use of Neuroimaging for Surgical Treatment of Temporal Lobe Epilepsy. JAMA Neurology 2016;73:464. https://doi.org/10.1001/jamaneurol.2015.4996.
[47] Latchaw RE, Yonas H, Hunter GJ, Yuh WTC, Ueda T, Sorensen AG, et al. Guidelines and recommendations for perfusion imaging in cerebral ischemia: A scientific statement for healthcare professionals by the writing group on perfusion imaging, from the Council on Cardiovascular Radiology of the American Heart Association. Stroke 2003;34:1084–104. https://doi.org/10.1161/01.STR.0000064840.99271.9E.
[48] Bonte FJ, Weiner MF, Bigio EH, White CL. Brain blood flow in the dementias: SPECT with histopathologic correlation in 54 patients. Radiology 1997;202:793–797. https://doi.org/10.1148/radiology.202.3.9051035.
[49] Kapucu ÖL, Nobili F, Varrone A, Booij J, Vander Borght T, N\a agren K, et al. EANM procedure guideline for brain perfusion SPECT using 99m Tc-labelled radiopharmaceuticals, version 2 Background and definitions. Eur J Nucl Med Mol Imaging 2009. https://doi.org/10.1007/s00259-009-1266-y.
[50] O’Brien JT, Oertel WH, McKeith IG, Grosset DG, Walker Z, Tatsch K, et al. Is ioflupane I123 injection diagnostically effective in patients with movement disorders and dementia? Pooled analysis of four clinical trials. BMJ Open 2014;4:e005122. https://doi.org/10.1136/bmjopen-2014-005122.
[51] Seibyl JP, Kupsch A, Booij J, Grosset DG, Costa DC, Hauser RA, et al. Individual-Reader Diagnostic Performance and Between-Reader Agreement in Assessment of Subjects with Parkinsonian Syndrome or Dementia Using 123 I-Ioflupane Injection (DaTscan) Imaging n.d. https://doi.org/10.2967/jnumed.114.140228.
[52] Garnett ES, Firnau G, Nahmias C. Dopamine visualized in the basal ganglia of living man. Nature 1983;305:137–138. https://doi.org/10.1038/305137a0.
[53] Leenders KL, Palmer AJ, Quinn N, Clark JC, Firnau G, Garnett ES, et al. Brain dopamine metabolism in patients with Parkinson’s disease measured with positron emission tomography. Journal of Neurology, Neurosurgery, and Psychiatry 1986;49:853–60.
[54] Brooks DJ. The early diagnosis of Parkinson’s disease. Annals of Neurology 1998;44:S10–8.
[55] Ghaemi M, Hilker R, Rudolf J, Sobesky J, Heiss W-D. Differentiating multiple system atrophy from Parkinson’s disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J Neurol Neurosurg Psychiatry 2002;73:517–523. https://doi.org/10.1136/jnnp.73.5.517.
[56] Heiss W-D, Hilker R. The sensitivity of 18-fluorodopa positron emission tomography and magnetic resonance imaging in Parkinson’s disease. European Journal of Neurology 2004;11:5–12.
[57] Morrish PK, Sawle GV, Brooks DJ. Clinical and [18F]dopa PET findings in early Parkinson’s disease. Journal OfNeurology, Neurosurgery, and Psychiatry 1995;59:597–600. https://doi.org/10.1136/jnnp.59.6.597.
[58] Piccini P, Morrish PK, Turjanski N, Sawle GV, Burn DJ, Weeks RA, et al. Dopaminergic function in familial Parkinson’s disease: A clinical and18F-dopa positron emission tomography study. Annals of Neurology 1997;41:222–229. https://doi.org/10.1002/ana.410410213.
[59] Morbelli S, Esposito G, Arbizu J, Barthel H, Boellaard R, Bohnen NI, et al. EANM practice guideline/SNMMI procedure standard for dopaminergic imaging in Parkinsonian syndromes 1.0. Eur J Nucl Med Mol Imaging 2020;47:1885–912. https://doi.org/10.1007/s00259-020-04817-8.
[60] Varrone A, Asenbaum S, Vander Borght T, Booij J, Varrone A, Asenbaum S, et al. EANM procedure guidelines for PET brain imaging using [ 18 F]FDG, version 2 Background and definitions. Eur J Nucl Med Mol Imaging n.d. https://doi.org/10.1007/s00259-009-1264-0.
[61] Boellaard R, Delgado-Bolton R, Oyen WJG, Giammarile F, Tatsch K, Eschner W, et al. FDG PET/CT: EANM procedure guidelines for tumour imaging: version 2.0. European Journal of Nuclear Medicine and Molecular Imaging 2015;42:328–54. https://doi.org/10.1007/s00259-014-2961-x.
[62] Albert NL, Weller M, Suchorska B, Galldiks N, Soffietti R, Kim MM, et al. Response Assessment in Neuro-Oncology working group and European Association for Neuro-Oncology recommendations for the clinical use of PET imaging in gliomas. Neuro-Oncology 2016;18:1199–1208. https://doi.org/10.1093/neuonc/now058.
[63] Dunet V, Pomoni A, Hottinger A, Nicod-Lalonde M, Prior JO. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro Oncol 2015;18:426–34. https://doi.org/10.1093/neuonc/nov148.
[64] Herholz K, Pietrzyk U, Voges J, Schröder R, Halber M, Treuer H, et al. Correlation of glucose consumption and tumor cell density in astrocytomas. Journal of Neurosurgery 1993;79:853–858. https://doi.org/10.3171/jns.1993.79.6.0853.
[65] Prieto E, Marti-Climent JM, Dominguez-Prado I, Garrastachu P, Diez-Valle R, Tejada S, et al. Voxel-Based Analysis of Dual-Time-Point 18F-FDG PET Images for Brain Tumor Identification and Delineation. Journal of Nuclear Medicine 2011;52:865–872. https://doi.org/10.2967/jnumed.110.085324.
[66] Hatzoglou V, Yang TJ, Omuro A, Gavrilovic I, Ulaner G, Rubel J, et al. A prospective trial of dynamic contrast-enhanced MRI perfusion and fluorine-18 FDG PET-CT in differentiating brain tumor progression from radiation injury after cranial irradiation. Neuro-Oncology 2016;18:873–880. https://doi.org/10.1093/neuonc/nov301.
[67] Spence AM, Muzi M, Mankoff DA, O’Sullivan SF, Link JM, Lewellen TK, et al. 18F-FDG PET of gliomas at delayed intervals: improved distinction between tumor and normal gray matter. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2004;45:1653–9.
[68] Horky LL, Hsiao EM, Weiss SE, Drappatz J, Gerbaudo VH. Dual phase FDG-PET imaging of brain metastases provides superior assessment of recurrence versus post-treatment necrosis. Journal of Neuro-Oncology 2011;103:137–146. https://doi.org/10.1007/s11060-010-0365-8.
[69] Law I, Albert NL, Arbizu J, Boellaard R, Drzezga A, Galldiks N, et al. Joint EANM/EANO/RANO practice guidelines/SNMMI procedure standards for imaging of gliomas using PET with radiolabelled amino acids and [18F]FDG: version 1.0. Eur J Nucl Med Mol Imaging 2019;46:540–57. https://doi.org/10.1007/s00259-018-4207-9.
[70] Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, et al. Delineation of Brain Tumor Extent with [11C]L-Methionine Positron Emission Tomography: Local Comparison with Stereotactic Histopathology. Clinical Cancer Research 2004;10:7163–7170. https://doi.org/10.1158/1078-0432.CCR-04-0262.
[71] Pauleit D, Floeth F, Hamacher K, Riemenschneider MJ, Reifenberger G, Müller H-W, et al. O-(2-[18F]fluoroethyl)-L-tyrosine PET combined with MRI improves the diagnostic assessment of cerebral gliomas. Brain 2005;128:678–687. https://doi.org/10.1093/brain/awh399.
[72] Kratochwil C, Combs SE, Leotta K, Afshar-Oromieh A, Rieken S, Debus J, et al. Intra-individual comparison of 18F-FET and 18F-DOPA in PET imaging of recurrent brain tumors. Neuro-Oncology 2014;16:434–40. https://doi.org/10.1093/neuonc/not199.
[73] Schwarzenberg J, Czernin J, Cloughesy TF, Ellingson BM, Pope WB, Grogan T, et al. Treatment response evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research 2014;20:3550–9. https://doi.org/10.1158/1078-0432.CCR-13-1440.
[74] Galldiks N, Stoffels G, Filss C, Rapp M, Blau T, Tscherpel C, et al. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro-Oncology 2015;17:1293–300. https://doi.org/10.1093/neuonc/nov088.
[75] Cicone F, Minniti G, Romano A, Papa A, Scaringi C, Tavanti F, et al. Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. European Journal of Nuclear Medicine and Molecular Imaging 2015;42:103–111. https://doi.org/10.1007/s00259-014-2886-4.
[76] Hutterer M, Nowosielski M, Putzer D, Jansen NL, Seiz M, Schocke M, et al. [18F]-fluoro-ethyl-l-tyrosine PET: a valuable diagnostic tool in neuro-oncology, but not all that glitters is glioma. Neuro-Oncology 2013;15:341–351. https://doi.org/10.1093/neuonc/nos300.
[77] Laforce R, Buteau JP, Paquet N, Verret L, Houde M, Bouchard RW. The Value of PET in Mild Cognitive Impairment, Typical and Atypical/Unclear Dementias: A Retrospective Memory Clinic Study. American Journal of Alzheimer’s Disease & Other Dementiasr 2010;25:324–332. https://doi.org/10.1177/1533317510363468.
[78] Rabinovici GD, Rosen HJ, Alkalay A, Kornak J, Furst AJ, Agarwal N, et al. Amyloid vs FDG-PET in the differential diagnosis of AD and FTLD. Neurology 2011;77:2034–2042. https://doi.org/10.1212/WNL.0b013e31823b9c5e.
[79] Nobili F, Arbizu J, Bouwman F, Drzezga A, Agosta F, Nestor P, et al. European Association of Nuclear Medicine and European Academy of Neurology recommendations for the use of brain 18F-fluorodeoxyglucose positron emission tomography in neurodegenerative cognitive impairment and dementia: Delphi consensus. European Journal of Neurology 2018;25:1201–1217. https://doi.org/10.1111/ene.13728.
[80] Hellwig S, Amtage F, Kreft A, Buchert R, Winz OH, Vach W, et al. [18F]FDG-PET is superior to [123I]IBZM-SPECT for the differential diagnosis of parkinsonism. Neurology 2012;79:1314–1322. https://doi.org/10.1212/WNL.0b013e31826c1b0a.
[81] Mouthaan BE, Rados M, Barsi P, Boon P, Carmichael DW, Carrette E, et al. Current use of imaging and electromagnetic source localization procedures in epilepsy surgery centers across Europe. Epilepsia 2016;57:770–776. https://doi.org/10.1111/epi.13347.
[82] Guidelines for Neuroimaging Evaluation of Patients with Uncontrolled Epilepsy Considered for Surgery. Commission on Neuroimaging of the International League Against Epilepsy*. Epilepsia 1998;39:1375–1376. https://doi.org/10.1111/j.1528-1157.1998.tb01341.x.
[83] Graus F, Titulaer MJ, Balu R, Benseler S, Bien CG, Cellucci T, et al. A clinical approach to diagnosis of autoimmune encephalitis. The Lancet Neurology 2016;15:391–404. https://doi.org/10.1016/S1474-4422(15)00401-9.
[84] Morbelli S, Zoccarato M, Bauckneht M, Anglani M, Cecchin D. 18F-FDG-PET and MRI in autoimmune encephalitis: a systematic review of brain findings. Clinical and Translational Imaging 2018:1–18. https://doi.org/10.1007/s40336-018-0275-x.
[85] Minoshima S, Drzezga AE, Barthel H, Bohnen N, Djekidel M, Lewis DH, et al. SNMMI Procedure Standard/EANM Practice Guideline for Amyloid PET Imaging of the Brain 1.0 n.d. https://doi.org/10.2967/jnumed.116.174615.
[86] Van den Wyngaert T, Strobel K, Kampen WU, Kuwert T, van der Bruggen W, Mohan HK, et al. The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging 2016;43:1723–38. https://doi.org/10.1007/s00259-016-3415-4.
[87] Blake GM, Park-Holohan SJ, Cook GJ, Fogelman I. Quantitative studies of bone with the use of 18F-fluoride and 99mTc-methylene diphosphonate. Semin Nucl Med 2001;31:28–49. https://doi.org/10.1053/snuc.2001.18742.
[88] Usmani S, Marafi F, Esmail A, Ahmed N. A proof-of-concept study analyzing the clinical utility of fluorine-18-sodium fluoride PET-CT in skeletal staging of oncology patients with end-stage renal disease on dialysis. Nucl Med Commun 2017;38:1067–75. https://doi.org/10.1097/MNM.0000000000000759.
[89] Beheshti M, Mottaghy FM, Payche F, Behrendt FFF, Van den Wyngaert T, Fogelman I, et al. 18F-NaF PET/CT: EANM procedure guidelines for bone imaging. Eur J Nucl Med Mol Imaging 2015;42:1767–77. https://doi.org/10.1007/s00259-015-3138-y.
[90] Segall G, Delbeke D, Stabin MG, Even-Sapir E, Fair J, Sajdak R, et al. SNM Practice Guideline for Sodium 18 F-Fluoride PET/CT Bone Scans 1.0 * n.d. https://doi.org/10.2967/jnumed.110.082263.
[91] Parker JA, Coleman RE, Grady E, Royal HD, Siegel BA, Stabin MG, et al. SNM practice guideline for lung scintigraphy 4.0. J Nucl Med Technol 2012;40:57–65. https://doi.org/10.2967/jnmt.111.101386.
[92] Milanesi O, Stellin G, Zucchetta P. Nuclear Medicine in Pediatric Cardiology. Semin Nucl Med 2017;47:158–69. https://doi.org/10.1053/j.semnuclmed.2016.10.008.
[93] Mortensen J, Gutte H. SPECT/CT and pulmonary embolism. European Journal of Nuclear Medicine and Molecular Imaging 2014;41 Suppl 1:S81–90. https://doi.org/10.1007/s00259-013-2614-5.
[94] Ciofetta G, Piepsz A, Roca I, Fisher S, Hahn K, Sixt R, et al. Guidelines for lung scintigraphy in children. Eur J Nucl Med Mol Imaging 2007;34:1518–26. https://doi.org/10.1007/s00259-007-0485-3.
[95] Leblanc M, Tessier, M, Ollenberger, G, O’Brien, C. CANM Guidelines for Ventilation/Perfusion (V/P SPECT) in Pulmonary Embolism 2018. https://canm-acmn.ca/resources/Documents/Guidelines_Resources/MasterDocument_Final_Nov_21_incl-Exec-Sum_ver3_Dec.%2012_.pdf.
[96] Shizukuishi K, Nagaoka S, Kinno Y, Saito M, Takahashi N, Kawamoto M, et al. Scoring analysis of salivary gland scintigraphy in patients with Sjögren’s syndrome. Ann Nucl Med 2003;17:627–31. https://doi.org/10.1007/BF02984967.
[97] Anjos DA, Etchebehere ECSC, Santos AO, Lima MCL, Ramos CD, Paula RB, et al. Normal values of [99mTc]pertechnetate uptake and excretion fraction by major salivary glands. Nuclear Medicine Communications 2006;27:395–403. https://doi.org/10.1097/01.mnm.0000202864.52046.b1.
[98] Seven B, Yoruk O, Varoglu E, Ucuncu H, Sahin A, Kursad Ayan A, et al. Evaluation by (99m)Tc-pertechnetate scintigraphy of the effect of levocetirizine on salivary glands function, in allergic rhinitis patients. Hell J Nucl Med 2009;12:119–22.
[99] Angusti T, Pilati E, Parente A, Carignola R, Manfredi M, Cauda S, et al. Semi-quantitative analysis of salivary gland scintigraphy in Sjögren’s syndrome diagnosis: a first-line tool. Clinical Oral Investigations 2017;21:2389–2395. https://doi.org/10.1007/s00784-016-2034-6.
[100] Vayre L, Sabourin JC, Caillou B, Ducreux M, Schlumberger M, Bidart JM. Immunohistochemical analysis of Na+/I- symporter distribution in human extra-thyroidal tissues. European Journal of Endocrinology 1999;141:382–6.
[101] Vitali C, Bombardieri S, Jonsson R, Moutsopoulos HM, Alexander EL, Carsons SE, et al. Classification criteria for Sjögren’s syndrome: a revised version of the European criteria proposed by the American-European Consensus Group. Annals of the Rheumatic Diseases 2002;61:554–8.
[102] Donohoe KJ, Maurer AH, Ziessman HA, Urbain JL, Royal HD. Procedure guideline for gastric emptying and motility. Society of Nuclear Medicine. J Nucl Med 1999;40:1236–9.
[103] Dam HQ, Brandon DC, Grantham VV, Hilson AJ, Howarth DM, Maurer AH, et al. The SNMMI Procedure Standard/EANM Practice Guideline for Gastrointestinal Bleeding Scintigraphy 2.0 2014. https://doi.org/10.2967/jnmt.114.147959.
[104] Weissmann H, Frank M, Bernstein L, Freeman L. Rapid and accurate diagnosis of acute cholecystitis with 99mTc-HIDA cholescintigraphy. American Journal of Roentgenology 1979;132:523–528. https://doi.org/10.2214/ajr.132.4.523.
[105] Cotton PB, Elta GH, Carter CR, Pasricha PJ, Corazziari ES. Gallbladder and Sphincter of Oddi Disorders. Gastroenterology 2016;150:1420–1429.e2. https://doi.org/10.1053/j.gastro.2016.02.033.
[106] Dave RV, Pathak S, Cockbain AJ, Lodge JP, Smith AM, Chowdhury FU, et al. Management of gallbladder dyskinesia: patient outcomes following positive 99mtechnetium (Tc)-labelled hepatic iminodiacetic acid (HIDA) scintigraphy with cholecystokinin (CCK) provocation and laparoscopic cholecystectomy. Clinical Radiology 2015;70:400–407. https://doi.org/10.1016/j.crad.2014.12.006.
[107] Ziessman HA, Jones DA, Muenz LR, Agarval AK. Cholecystokinin cholescintigraphy: methodology and normal values using a lactose-free fatty-meal food supplement. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2003;44:1263–6.
[108] Tulchinsky M, Ciak BW, Delbeke D, Hilson A, Holes-Lewis KA, Stabin MG, et al. SNM Practice Guideline for Hepatobiliary Scintigraphy 4.0. Journal of Nuclear Medicine Technology 2010;38:210–218. https://doi.org/10.2967/jnmt.110.082289.
[109] ICRP. ICRP Publication 80. Radiation Dose to Patients from Radiopharmaceuticals: A Compendium of Current Information Related to Frequently Used Substances. Annals ICRP 1998;28.
[110] Proano M, Camilleri M, Phillips SF, Thomforde GM, Brown ML, Tucker RL. Unprepared human colon does not discriminate between solids and liquids. American Journal of Physiology-Gastrointestinal and Liver Physiology 1991;260:G13–G16. https://doi.org/10.1152/ajpgi.1991.260.1.G13.
[111] Krevsky B, Malmud L, D’Ecrole F, Maurer A, Fisher R. Colonic transit scintigraphy. A physiologic approach to the quantitative measurement of colonic transit in humans. - PubMed - NCBI. Gastroenterology 1986;91:1102–1112.
[112] Majd M, Bar-Sever Z, Santos AI, De Palma D. The SNMMI and EANM Procedural Guidelines for Diuresis Renography in Infants and Children. J Nucl Med 2018;59:1636–40. https://doi.org/10.2967/jnumed.118.215921.
[113] EANM. EANM Paediatrics Guidelines. n.d.
[114] Blaufox MD, Aurell M, Bubeck B, Fommei E, Piepsz A, Russell C, et al. Report of the Radionuclides in Nephrourology Committee on renal clearance. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 1996;37:1883–90.
[115] Prigent A, Cosgriff P, Gates GF, Granerus G, Fine EJ, Itoh K, et al. Consensus report on quality control of quantitative measurements of renal function obtained from the renogram: International Consensus Committee from the Scientific Committee of Radionuclides in Nephrourology. Seminars in Nuclear Medicine 1999;29:146–59.
[116] Taylor AT. Radionuclides in Nephrourology, Part 1: Radiopharmaceuticals, Quality Control, and Quantitative Indices. Journal of Nuclear Medicine 2014;55:608–615. https://doi.org/10.2967/jnumed.113.133447.
[117] Majd M, Nussbaum Blask AR, Markle BM, Shalaby-Rana E, Pohl HG, Park J-S, et al. Acute Pyelonephritis: Comparison of Diagnosis with 99m Tc-DMSA SPECT, Spiral CT, MR Imaging, and Power Doppler US in an Experimental Pig Model. Radiology 2001;218:101–108. https://doi.org/10.1148/radiology.218.1.r01ja37101.
[118] Farhat W, Traubici J, Sherman C, Williams T, Babyn P, Mclorie G. Reliability of Contrast Enhanced Sonography with Harmonic Imaging for Detecting Early Renal Scarring in Experimental Pyelonephritis in a Porcine Model: Preliminary Results. The Journal of Urology 2002;168:1114–1117. https://doi.org/10.1016/S0022-5347(05)64603-4.
[119] Sinha MD, Gibson P, Kane T, Lewis MA. Accuracy of ultrasonic detection of renal scarring in different centres using DMSA as the gold standard n.d. https://doi.org/10.1093/ndt/gfm155.
[120] Pasini A, Benetti E, Conti G, Ghio L, Lepore M, Massella L, et al. The Italian Society for Pediatric Nephrology (SINePe) consensus document on the management of nephrotic syndrome in children: Part I - Diagnosis and treatment of the first episode and the first relapse. Italian Journal of Pediatrics 2017;43:41. https://doi.org/10.1186/s13052-017-0356-x.
[121] Snow BW, Taylor MB. Non-invasive vesicoureteral reflux imaging. Journal of Pediatric Urology 2010;6:543–549. https://doi.org/10.1016/j.jpurol.2010.02.211.
[122] Unver T, Alpay H, Biykli N, Ones T. Comparison of direct radionuclide cystography and voiding cystourethrography in detecting vesicoureteral reflux. Pediatrics International 2006;48:287–291. https://doi.org/10.1111/j.1442-200X.2006.02206.x.
[123] Stabin MG, Gelfand MJ. Dosimetry of pediatric nuclear medicine procedures. The Quarterly Journal of Nuclear Medicine : Official Publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR) 1998;42:93–112.
[124] Fettich J, Colarinha P, Fischer S, Frökier J, Gordon I, Hahn K, et al. GUIDELINES FOR DIRECT RADIONUCLIDE CYSTOGRAPHY IN CHILDREN Under the Auspices of the Paediatric Committee of the European Association of Nuclear Medicine n.d. https://doi.org/10.1007/s00259-003-1137-x
[125] Prigent A. Monitoring Renal Function and Limitations of Renal Function Tests. Seminars in Nuclear Medicine 2008;38:32–46. https://doi.org/10.1053/j.semnuclmed.2007.09.003.
[126] Prigent A, Piepsz A. Functional Imaging in Nephro-Urology | Taylor & Francis Group. 1st Edition. London: CRC Press; 2006.
[127] Rehling M, Mqller ML, Thamdrup B, Lund A N J 0, Trap-Jensen DJ. Simultaneous measurement of renal clearance and plasma clearance of gh " Tc-labelled diethylenetriaminepenta-acetate, %4abelled ethylenediaminetetra-acetate aqd inulin in man. Clinical Science 1984;66:613–619.
[128] Moore A, Park-Holohan S-J, Blake G, Fogelman I. Conventional measurements of GFR using 51 Cr-EDTA overestimate true renal clearance by 10 percent. European Journal of Nuclear Medicine and Molecular Imaging 2003;30:4–8. https://doi.org/10.1007/s00259-002-1007-y.
[129] Garnett ES, Parsons V, Veall N. Measurement of Glomerular Filtration-Rate in Man Using a 51CR/Edetic-Acid Complex. The Lancet 1967;289:818–819. https://doi.org/10.1016/S0140-6736(67)92781-X.
[130] Fleming JS, Zivanovic MA, Blake GM, Burniston M, Cosgriff PS, British Nuclear Medicine Society. Guidelines for the measurement of glomerular filtration rate using plasma sampling. Nuclear Medicine Communications 2004;25:759–69.
[131] Piepsz, A, Colarinha, P, Gordon, I, Hahn, K, Olivier, P, Sixt, R, et al. Guidelines for glomerular filtration rate determination in children. EJNMMI 2001;28:BP31-6.
[132] Saha GB. Fundamentals of Nuclear Pharmacy. Cham: Springer International Publishing; 2018. https://doi.org/10.1007/978-3-319-57580-3.
[133] Treves ST, editor. Pediatric Nuclear Medicine and Molecular Imaging. 4th ed. New York: Springer-Verlag; 2014. https://doi.org/10.1007/978-1-4614-9551-2.
[134] Fleming JS, Wilkinson J, Oliver RM, Ackery DM, Blake GM, Waller DG. Comparison of radionuclide estimation of glomerular filtration rate using technetium 99m diethylenetriaminepentaacetic acid and chromium 51 ethylenediaminetetraacetic acid. European Journal of Nuclear Medicine 1991;18:391–395. https://doi.org/10.1007/BF02258429.
[135] Biggi A, Viglietti A, Farinelli MC, Bonada C, Camuzzini G. Estimation of glomerular filtration rate and technetium-99m diethylene triamine penta-acetic acid using chromium-51 ethylene diamine tetra-acetic acid. European Journal of Nuclear Medicine 1995;22:532–536. https://doi.org/10.1007/BF00817277.
[136] Peters AM. Quantification of renal haemodynamics with radionuclides. European Journal of Nuclear Medicine 1991;18:274–286. https://doi.org/10.1007/BF00186653.
[137] Blaufox MD, Merrill JP. Simplified hippuran clearance. Measurement of renal function in man with simplified hippuran clearances. Nephron 1966;3:274–81. https://doi.org/10.1159/000179542.
[138] Mackay A, Eadie AS, Cumming AMM, Graham AG, Adams FG, Horton PW. Assessment of total and divided renal plasma flow by 1231-hippuran renography. Kidney International 1981;19:49–57. https://doi.org/10.1038/ki.1981.6.
[139] Bagni B, Bagni I, Orsolon P, Corazzari T. How Gender and Age Affect Iodine-131-OIH and Technetium-99m-MAG3 Clearance. J Nucl Med Technol 2000;28:156–158.
[140] Tauxe WN, Dubovsky EvaV, Kidd T, Diaz F, Smith LR. New formulas for the calculation of effective renal plasma flow. European Journal of Nuclear Medicine 1982;7:51–54. https://doi.org/10.1007/BF00251641.
[141] Blaufox MD, De Palma D, Taylor A, Szabo Z, Prigent A, Samal M, et al. The SNMMI and EANM practice guideline for renal scintigraphy in adults. Eur J Nucl Med Mol Imaging 2018;45:2218–28. https://doi.org/10.1007/s00259-018-4129-6.
[142] Bergmann, H, Mostbeck, A, Kletter, K. Empfehlungen zur Durchführung von nuklearmedizinischen Nierenfunktionsuntersuchungen mit Gammakamera und Computer. Acta Medica Austriaca 1991;43:Suppl 1-19.
[143] Tonnesen, K, Munck, O, Hald, T. Influence on the renogram of variation in skin-to-kidney distance and the clinical importance thereof. Radionuclides in Nephrology, Stuttgart: Georg Thieme Verlag; 1975, p. 79–86.
[144] Britton KE. Dynamic radionuclide imaging. Br Med Bull 1980;36:215–22. https://doi.org/10.1093/oxfordjournals.bmb.a071644.
[145] Muncker, T. Renal Tixels. Computer Assisted Functional Analysis. 19. Internationale Jahrestagung der Gesellschaft für Nuklearmedizin, Schattauer Verlag; 1982, p. 151–5.
[146] Britton KE, Gilday DL, Maisey M. Clinical Nuclear Medicine. Springer US; 1991. https://doi.org/10.1007/978-1-4899-3358-4.
[147] Giovanella L, Treglia G, Iakovou I, Mihailovic J, Verburg FA, Luster M. EANM practice guideline for PET/CT imaging in medullary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2020;47:61–77. https://doi.org/10.1007/s00259-019-04458-6.
[148] Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 2016;26:1–133. https://doi.org/10.1089/thy.2015.0020.
[149] Giovanella L, Campenni A, Treglia G, Verburg FA, Trimboli P, Ceriani L, et al. Molecular imaging with 99mTc-MIBI and molecular testing for mutations in differentiating benign from malignant follicular neoplasm: a prospective comparison. European Journal of Nuclear Medicine and Molecular Imaging 2016;43:1018–1026. https://doi.org/10.1007/s00259-015-3285-1.
[150] Treglia G, Sadeghi R, Schalin-Jäntti C, Caldarella C, Ceriani L, Giovanella L, et al. Detection rate of 99m Tc-MIBI single photon emission computed tomography (SPECT)/CT in preoperative planning for patients with primary hyperparathyroidism: A meta-analysis. Head & Neck 2016;38:E2159–E2172. https://doi.org/10.1002/hed.24027.
[151] Hindié E, Ugur Ö, Fuster D, O ’doherty M, Grassetto G, Ureña P, et al. 2009 EANM parathyroid guidelines. Eur J Nucl Med Mol Imaging 2009;36:1201–1216. https://doi.org/10.1007/s00259-009-1131-z.
[152] Glunde K, Bhujwalla ZM, Ronen SM. Choline metabolism in malignant transformation. Nat Rev Cancer 2011;11:835–48. https://doi.org/10.1038/nrc3162.
[153] Ishizuka T, Kajita K, Kamikubo K, Komaki T, Miura K, Nagao S, et al. Phospholipid/Ca2+-dependent protein kinase activity in human parathyroid adenoma. Endocrinol Jpn 1987;34:965–8. https://doi.org/10.1507/endocrj1954.34.965.
[154] Jager PL, Vaalburg W, Pruim J, Vries EGE de, Langen K-J, Piers DA. Radiolabeled Amino Acids: Basic Aspects and Clinical Applications in Oncology*. J Nucl Med 2001;42:432–45.
[155] Caldarella C, Treglia G, Isgrò MA, Giordano A. Diagnostic performance of positron emission tomography using 11C-methionine in patients with suspected parathyroid adenoma: a meta-analysis. Endocrine 2013;43:78–83. https://doi.org/10.1007/s12020-012-9746-4.
[156] Boccalatte LA, Higuera F, Gómez NL, Torre AY de la, Mazzaro EL, Galich AM, et al. Usefulness of 18F-Fluorocholine Positron Emission Tomography–Computed Tomography in Locating Lesions in Hyperparathyroidism: A Systematic Review. JAMA Otolaryngol Head Neck Surg 2019;145:743–50. https://doi.org/10.1001/jamaoto.2019.0574.
[157] Michaud L, Balogova S, Burgess A, Ohnona J, Huchet V, Kerrou K, et al. A Pilot Comparison of 18F-fluorocholine PET/CT, Ultrasonography and 123I/99mTc-sestaMIBI Dual-Phase Dual-Isotope Scintigraphy in the Preoperative Localization of Hyperfunctioning Parathyroid Glands in Primary or Secondary Hyperparathyroidism: Influence of Thyroid Anomalies. Medicine (Baltimore) 2015;94:e1701. https://doi.org/10.1097/MD.0000000000001701.
[158] Grimaldi S, Young J, Kamenicky P, Hartl D, Terroir M, Leboulleux S, et al. Challenging pre-surgical localization of hyperfunctioning parathyroid glands in primary hyperparathyroidism: the added value of 18F-Fluorocholine PET/CT. Eur J Nucl Med Mol Imaging 2018;45:1772–80. https://doi.org/10.1007/s00259-018-4018-z.
[159] Treglia G, Piccardo A, Imperiale A, Strobel K, Kaufmann PA, Prior JO, et al. Diagnostic performance of choline PET for detection of hyperfunctioning parathyroid glands in hyperparathyroidism: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2019;46:751–65. https://doi.org/10.1007/s00259-018-4123-z.
[160] Orevi M, Freedman N, Mishani E, Bocher M, Jacobson O, Krausz Y. Localization of parathyroid adenoma by 11C-choline PET/CT: preliminary results. Clin Nucl Med 2014;39:1033–8. https://doi.org/10.1097/RLU.0000000000000607.
[161] Kluijfhout WP, Pasternak JD, Drake FT, Beninato T, Gosnell JE, Shen WT, et al. Use of PET tracers for parathyroid localization: a systematic review and meta-analysis. Langenbecks Arch Surg 2016;401:925–35. https://doi.org/10.1007/s00423-016-1425-0.
[162] Mattsson S, Johansson L, Leide Svegborn S, Liniecki J, Noßke D, Riklund KÅ, et al. Radiation Dose to Patients from Radiopharmaceuticals: a Compendium of Current Information Related to Frequently Used Substances. Ann ICRP 2015;44:7–321. https://doi.org/10.1177/0146645314558019.
[163] Tolvanen T, Yli-Kerttula T, Ujula T, Autio A, Lehikoinen P, Minn H, et al. Biodistribution and radiation dosimetry of [11C]choline: a comparison between rat and human data. European Journal of Nuclear Medicine and Molecular Imaging 2010;37:874–883. https://doi.org/10.1007/s00259-009-1346-z.
[164] Deloar HM, Fujiwara T, Nakamura T, Itoh M, Imai D, Miyake M, et al. Estimation of internal absorbed dose of L-[methyl-11C]methionine using whole-body positron emission tomography. Eur J Nucl Med 1998;25:629–33. https://doi.org/10.1007/s002590050265.
[165] Cook GJR, Maisey MN, Fogelman I. Normal variants, artefacts and interpretative pitfalls in PET imaging with 18-fluoro-2-deoxyglucose and carbon-11 methionine. Eur J Nucl Med 1999;26:1363–78. https://doi.org/10.1007/s002590050597.
[166] Yen R-F, Wu V-C, Liu K-L, Cheng M-F, Wu Y-W, Chueh S-C, et al. 131I-6 -Iodomethyl-19-Norcholesterol SPECT/CT for Primary Aldosteronism Patients with Inconclusive Adrenal Venous Sampling and CT Results. Journal of Nuclear Medicine 2009;50:1631–1637. https://doi.org/10.2967/jnumed.109.064873.
[167] Vidal-Sicart S, Vera DR, Valdés Olmos RA. Next generation of radiotracers for sentinel lymph node biopsy: What is still necessary to establish new imaging paradigms? Rev Esp Med Nucl Imagen Mol 2018;37:373–9. https://doi.org/10.1016/j.remn.2018.09.001.
[168] Norgine B.V. Lymphoseek, INN-tilmanocept 2014.
[169] Bluemel C, Herrmann K, Giammarile F, Nieweg OE, Dubreuil J, Testori A, et al. EANM practice guidelines for lymphoscintigraphy and sentinel lymph node biopsy in melanoma n.d. https://doi.org/10.1007/s00259-015-3135-1.
[170] Giammarile F, Schilling C, Gnanasegaran G, Bal C, Oyen WJG, Rubello D, et al. The EANM practical guidelines for sentinel lymph node localisation in oral cavity squamous cell carcinoma. Eur J Nucl Med Mol Imaging 2019;46:623–37. https://doi.org/10.1007/s00259-018-4235-5.
[171] Giammarile F, Alazraki N, Aarsvold JN, Audisio RA, Glass E, Grant SF, et al. The EANM and SNMMI practice guideline for lymphoscintigraphy and sentinel node localization in breast cancer. Eur J Nucl Med Mol Imaging 2013;40:1932–47. https://doi.org/10.1007/s00259-013-2544-2.
[172] Giammarile F, Bozkurt MF, Cibula D, Pahisa J, Oyen WJ, Paredes P, et al. The EANM clinical and technical guidelines for lymphoscintigraphy and sentinel node localization in gynaecological cancers. Eur J Nucl Med Mol Imaging 2014;41:1463–77. https://doi.org/10.1007/s00259-014-2732-8.
[173] Pearson TC, Guthrie DL, Simpson J, Chinn S, Barosi G, Ferrant A, et al. Interpretation of measured red cell mass and plasma volume in adults: Expert Panel on Radionuclides of the International Council for Standardization in Haematology. British Journal of Haematology 2008;89:748–756. https://doi.org/10.1111/j.1365-2141.1995.tb08411.x.
[174] Mostbeck A, Partsch H, Kahn P. Quantitative Isotopenlymphographie. In: Holzmann H, Altmeyer P, Hör G, Hahn K, editors. Dermatologie und Nuklearmedizin, Berlin, Heidelberg: Springer; 1985, p. 426–31. https://doi.org/10.1007/978-3-642-70279-2_54.
[175] Brauer, W, Doeller, W, Gallowtsch, H, Gretener, S, Hoppe, H, Menzinger, G, et al. AG 3: Weiterführende Diagnostik 2017.
[176] Hassanein AH, Maclellan RA, Grant FD, Greene AK. Diagnostic Accuracy of Lymphoscintigraphy for Lymphedema and Analysis of False-Negative Tests. Plast Reconstr Surg Glob Open 2017;5:e1396. https://doi.org/10.1097/GOX.0000000000001396.
[177] Partsch H. Assessment of abnormal lymph drainage for the diagnosis of lymphedema by isotopic lymphangiography and by indirect lymphography. Clinics in Dermatology 1995;13:445–50. https://doi.org/10.1016/0738-081X(95)00085-T.
[178] The Royal College Of Radiologists, Royal College Of Physicians Of London, Royal College Of Physicians And Surgeons Of Glasgow, Royal College Of Physicians Of Edinburgh, British Nuclear Medicine Society, Administration Of Radioactive Substances Advisory Committee. Evidence-based indications for the use of PET-CT in the United Kingdom 2016. Clin Radiol 2016;71:e171-188. https://doi.org/10.1016/j.crad.2016.05.001.
[179] Podo F. Tumour phospholipid metabolism. NMR in Biomedicine 1999;12:413–39.
[180] Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 1998;39:990–5.
[181] Evangelista L, Briganti A, Fanti S, Joniau S, Reske S, Schiavina R, et al. New Clinical Indications for 18 F/ 11 C-choline, New Tracers for Positron Emission Tomography and a Promising Hybrid Device for Prostate Cancer Staging: A Systematic Review of the Literature. European Urology 2016;70:161–175. https://doi.org/10.1016/j.eururo.2016.01.029.
[182] Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology 2010;254:925–33. https://doi.org/10.1148/radiol.09090413.
[183] Graziani T, Ceci F, Castellucci P, Polverari G, Lima GM, Lodi F, et al. 11C-Choline PET/CT for restaging prostate cancer. Results from 4,426 scans in a single-centre patient series. Eur J Nucl Med Mol Imaging 2016;43:1971–9. https://doi.org/10.1007/s00259-016-3428-z.
[184] Picchio M, Briganti A, Fanti S, Heidenreich A, Krause BJ, Messa C, et al. The Role of Choline Positron Emission Tomography/Computed Tomography in the Management of Patients with Prostate-Specific Antigen Progression After Radical Treatment of Prostate Cancer. European Urology 2011;59:51–60. https://doi.org/10.1016/j.eururo.2010.09.004.
[185] Picchio M, Berardi G, Fodor A, Busnardo E, Crivellaro C, Giovacchini G, et al. 11C-Choline PET/CT as a guide to radiation treatment planning of lymph-node relapses in prostate cancer patients. European Journal of Nuclear Medicine and Molecular Imaging 2014;41:1270–9. https://doi.org/10.1007/s00259-014-2734-6.
[186] Giovacchini G, Picchio M, Coradeschi E, Scattoni V, Bettinardi V, Cozzarini C, et al. [11C]Choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. European Journal of Nuclear Medicine and Molecular Imaging 2008;35:1065–1073. https://doi.org/10.1007/s00259-008-0716-2.
[187] Tuncel M, Souvatzoglou M, Herrmann K, Stollfuss J, Schuster T, Weirich G, et al. [11C]Choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancer. Nuclear Medicine and Biology 2008;35:689–695. https://doi.org/10.1016/j.nucmedbio.2008.05.006.
[188] Castilla-Lièvre M-A, Franco D, Gervais P, Kuhnast B, Agostini H, Marthey L, et al. Diagnostic value of combining 11C-choline and 18F-FDG PET/CT in hepatocellular carcinoma. Eur J Nucl Med Mol Imaging 2016;43:852–9. https://doi.org/10.1007/s00259-015-3241-0.
[189] Lanza E, Donadon M, Felisaz P, Mimmo A, Chiti A, Torzilli G, et al. Refining the management of patients with hepatocellular carcinoma integrating 11C-choline PET/CT scan into the multidisciplinary team discussion. Nucl Med Commun 2017;38:826–36. https://doi.org/10.1097/MNM.0000000000000719.
[190] Calabria FF, Barbarisi M, Gangemi V, Grillea G, Cascini GL. Molecular imaging of brain tumors with radiolabeled choline PET. Neurosurg Rev 2018;41:67–76. https://doi.org/10.1007/s10143-016-0756-1.
[191] Fodor A, Berardi G, Fiorino C, Picchio M, Busnardo E, Kirienko M, et al. Toxicity and efficacy of salvage carbon 11-choline positron emission tomography/computed tomography-guided radiation therapy in patients with lymph node recurrence of prostate cancer. BJU Int 2017;119:406–13. https://doi.org/10.1111/bju.13510.
[192] Giovacchini G, Incerti E, Mapelli P, Kirienko M, Briganti A, Gandaglia G, et al. [11C]Choline PET/CT predicts survival in hormone-naive prostate cancer patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging 2015;42:877–84. https://doi.org/10.1007/s00259-015-3015-8.
[193] Giovacchini G, Guglielmo P, Mapelli P, Incerti E, Gajate AMS, Giovannini E, et al. 11C-choline PET/CT predicts survival in prostate cancer patients with PSA < 1 NG/ml. Eur J Nucl Med Mol Imaging 2019;46:921–9. https://doi.org/10.1007/s00259-018-4253-3.
[194] Fendler WP, Eiber M, Beheshti M, Bomanji J, Ceci F, Cho S, et al. 68Ga-PSMA PET/CT: Joint EANM and SNMMI procedure guideline for prostate cancer imaging: version 1.0. Eur J Nucl Med Mol Imaging 2017;44:1014–24. https://doi.org/10.1007/s00259-017-3670-z.
[195] Mottet, N, van den Bergh, R, Briers, E. EAU-ESTRO-SIOG guidelines on prostate cancer. EAU Guidelines. Edn.In: presented at the EAU Annual Congress, Barcelona: 2019.
[196] Hofman MS, Lawrentschuk N, Francis RJ, Tang C, Vela I, Thomas P, et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 2020;395:1208–16. https://doi.org/10.1016/S0140-6736(20)30314-7.
[197] Kratochwil C, Fendler WP, Eiber M, Baum R, Bozkurt MF, Czernin J, et al. EANM procedure guidelines for radionuclide therapy with 177Lu-labelled PSMA-ligands (177Lu-PSMA-RLT). Eur J Nucl Med Mol Imaging 2019;46:2536–44. https://doi.org/10.1007/s00259-019-04485-3.
[198] Fendler WP, Ferdinandus J, Czernin J, Eiber M, Flavell RR, Behr SC, et al. Impact of 68Ga-PSMA-11 PET on the Management of recurrent Prostate Cancer in a Prospective Single-Arm Clinical Trial. J Nucl Med 2020. https://doi.org/10.2967/jnumed.120.242180.
[199] Calais J, Czernin J, Cao M, Kishan AU, Hegde JV, Shaverdian N, et al. 68Ga-PSMA-11 PET/CT Mapping of Prostate Cancer Biochemical Recurrence After Radical Prostatectomy in 270 Patients with a PSA Level of Less Than 1.0 ng/mL: Impact on Salvage Radiotherapy Planning. J Nucl Med 2018;59:230–7. https://doi.org/10.2967/jnumed.117.201749.
[200] Emmett L, Tang R, Nandurkar R, Hruby G, Roach P, Watts JA, et al. 3-Year Freedom from Progression After 68Ga-PSMA PET/CT-Triaged Management in Men with Biochemical Recurrence After Radical Prostatectomy: Results of a Prospective Multicenter Trial. J Nucl Med 2020;61:866–72. https://doi.org/10.2967/jnumed.119.235028.
[201] Ceci F, Bianchi L, Borghesi M, Polverari G, Farolfi A, Briganti A, et al. Prediction nomogram for 68Ga-PSMA-11 PET/CT in different clinical settings of PSA failure after radical treatment for prostate cancer. Eur J Nucl Med Mol Imaging 2020;47:136–46. https://doi.org/10.1007/s00259-019-04505-2.
[202] Rauscher I, Düwel C, Haller B, Rischpler C, Heck MM, Gschwend JE, et al. Efficacy, Predictive Factors, and Prediction Nomograms for 68Ga-labeled Prostate-specific Membrane Antigen-ligand Positron-emission Tomography/Computed Tomography in Early Biochemical Recurrent Prostate Cancer After Radical Prostatectomy. Eur Urol 2018;73:656–61. https://doi.org/10.1016/j.eururo.2018.01.006.
[203] Fendler WP, Weber M, Iravani A, Hofman MS, Calais J, Czernin J, et al. Prostate-Specific Membrane Antigen Ligand Positron Emission Tomography in Men with Nonmetastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2019;25:7448–54. https://doi.org/10.1158/1078-0432.CCR-19-1050.
[204] Eiber M, Herrmann K, Calais J, Hadaschik B, Giesel FL, Hartenbach M, et al. Prostate Cancer Molecular Imaging Standardized Evaluation (PROMISE): Proposed miTNM Classification for the Interpretation of PSMA-Ligand PET/CT. J Nucl Med 2018;59:469–78. https://doi.org/10.2967/jnumed.117.198119.
[205] Rowe SP, Pienta KJ, Pomper MG, Gorin MA. PSMA-RADS Version 1.0: A Step Towards Standardizing the Interpretation and Reporting of PSMA-targeted PET Imaging Studies. Eur Urol 2018;73:485–7. https://doi.org/10.1016/j.eururo.2017.10.027.
[206] Fanti S, Minozzi S, Morigi JJ, Giesel F, Ceci F, Uprimny C, et al. Development of standardized image interpretation for 68Ga-PSMA PET/CT to detect prostate cancer recurrent lesions. Eur J Nucl Med Mol Imaging 2017;44:1622–35. https://doi.org/10.1007/s00259-017-3725-1.
[207] Toriihara A, Nobashi T, Baratto L, Duan H, Moradi F, Park S, et al. Comparison of 3 Interpretation Criteria for 68Ga-PSMA11 PET Based on Inter- and Intrareader Agreement. J Nucl Med 2020;61:533–9. https://doi.org/10.2967/jnumed.119.232504.
[208] Fanti S, Hadaschik B, Herrmann K. Proposal for Systemic-Therapy Response-Assessment Criteria at the Time of PSMA PET/CT Imaging: The PSMA PET Progression Criteria. J Nucl Med 2020;61:678–82. https://doi.org/10.2967/jnumed.119.233817.
[209] Sheikhbahaei S, Werner RA, Solnes LB, Pienta KJ, Pomper MG, Gorin MA, et al. Prostate-Specific Membrane Antigen (PSMA)-Targeted PET Imaging of Prostate Cancer: An Update on Important Pitfalls. Semin Nucl Med 2019;49:255–70. https://doi.org/10.1053/j.semnuclmed.2019.02.006.
[210] O’Keefe DS, Bacich DJ, Huang SS, Heston WDW. A Perspective on the Evolving Story of PSMA Biology, PSMA-Based Imaging, and Endoradiotherapeutic Strategies. J Nucl Med 2018;59:1007–13. https://doi.org/10.2967/jnumed.117.203877.
[211] Gordon IO, Tretiakova MS, Noffsinger AE, Hart J, Reuter VE, Al-Ahmadie HA. Prostate-specific membrane antigen expression in regeneration and repair. Mod Pathol 2008;21:1421–7. https://doi.org/10.1038/modpathol.2008.143.
[212] Kaittanis C, Andreou C, Hieronymus H, Mao N, Foss CA, Eiber M, et al. Prostate-specific membrane antigen cleavage of vitamin B9 stimulates oncogenic signaling through metabotropic glutamate receptors. J Exp Med 2018;215:159–75. https://doi.org/10.1084/jem.20171052.
[213] Wu LY, Anderson MO, Toriyabe Y, Maung J, Campbell TY, Tajon C, et al. The molecular pruning of a phosphoramidate peptidomimetic inhibitor of prostate-specific membrane antigen. Bioorg Med Chem 2007;15:7434–43. https://doi.org/10.1016/j.bmc.2007.07.028.
[214] Rowe SP, Gage KL, Faraj SF, Macura KJ, Cornish TC, Gonzalez-Roibon N, et al. 18F-DCFBC PET/CT for PSMA-Based Detection and Characterization of Primary Prostate Cancer. J Nucl Med 2015;56:1003–10. https://doi.org/10.2967/jnumed.115.154336.
[215] Chen Y, Pullambhatla M, Foss CA, Byun Y, Nimmagadda S, Senthamizhchelvan S, et al. 2-(3-{1-Carboxy-5-[(6-[18F]fluoro-pyridine-3-carbonyl)-amino]-pentyl}-ureido)-pentanedioic acid, [18F]DCFPyL, a PSMA-based PET imaging agent for prostate cancer. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research 2011;17:7645–53. https://doi.org/10.1158/1078-0432.CCR-11-1357.
[216] Rahbar K, Afshar-Oromieh A, Seifert R, Wagner S, Schäfers M, Bögemann M, et al. Diagnostic performance of 18F-PSMA-1007 PET/CT in patients with biochemical recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2018;45:2055–61. https://doi.org/10.1007/s00259-018-4089-x.
[217] Wurzer A, Di Carlo D, Schmidt A, Beck R, Eiber M, Schwaiger M, et al. Radiohybrid Ligands: A Novel Tracer Concept Exemplified by 18F- or 68Ga-Labeled rhPSMA Inhibitors. J Nucl Med 2020;61:735–42. https://doi.org/10.2967/jnumed.119.234922.
[218] Dietlein F, Hohberg M, Kobe C, Zlatopolskiy BD, Krapf P, Endepols H, et al. An 18F-Labeled PSMA Ligand for PET/CT of Prostate Cancer: First-in-Humans Observational Study and Clinical Experience with 18F-JK-PSMA-7 During the First Year of Application. J Nucl Med 2020;61:202–9. https://doi.org/10.2967/jnumed.119.229542.
[219] Mottet N, Cornford P, van den Bergh, R, Briers, E, De Santis, M, Fanti, S, et al. EAU guidelines. Edn. Presented at the Annual Congress, Amsterdam: 2020.
[220] Wondergem M, Jansen BHE, van der Zant FM, van der Sluis TM, Knol RJJ, van Kalmthout LWM, et al. Early lesion detection with 18F-DCFPyL PET/CT in 248 patients with biochemically recurrent prostate cancer. Eur J Nucl Med Mol Imaging 2019;46:1911–8. https://doi.org/10.1007/s00259-019-04385-6.
[221] Rowe S, Gorin M, Pienta K, Siegel B, Carroll P, Pouliot F, et al. Results from the OSPREY trial: A PrOspective Phase 2/3 Multi-Center Study of 18F-DCFPyL PET/CT Imaging in Patients with PRostate Cancer - Examination of Diagnostic AccuracY. J Nucl Med 2019;60:586–586.
[222] Giesel FL, Will L, Lawal I, Lengana T, Kratochwil C, Vorster M, et al. Intraindividual Comparison of 18F-PSMA-1007 and 18F-DCFPyL PET/CT in the Prospective Evaluation of Patients with Newly Diagnosed Prostate Carcinoma: A Pilot Study. J Nucl Med 2018;59:1076–80. https://doi.org/10.2967/jnumed.117.204669.
[223] Giesel FL, Knorr K, Spohn F, Will L, Maurer T, Flechsig P, et al. Detection Efficacy of 18F-PSMA-1007 PET/CT in 251 Patients with Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. J Nucl Med 2019;60:362–8. https://doi.org/10.2967/jnumed.118.212233.
[224] Eiber M, Kroenke M, Wurzer A, Ulbrich L, Jooß L, Maurer T, et al. 18F-rhPSMA-7 PET for the Detection of Biochemical Recurrence of Prostate Cancer After Radical Prostatectomy. J Nucl Med 2020;61:696–701. https://doi.org/10.2967/jnumed.119.234914.
[225] Plyku D, Mena E, Rowe SP, Lodge MA, Szabo Z, Cho SY, et al. Combined model-based and patient-specific dosimetry for 18F-DCFPyL, a PSMA-targeted PET agent. Eur J Nucl Med Mol Imaging 2018;45:989–98. https://doi.org/10.1007/s00259-018-3939-x.
[226] Hohberg M, Kobe C, Krapf P, Täger P, Hammes J, Dietlein F, et al. Biodistribution and radiation dosimetry of [18F]-JK-PSMA-7 as a novel prostate-specific membrane antigen-specific ligand for PET/CT imaging of prostate cancer. EJNMMI Res 2019;9:66. https://doi.org/10.1186/s13550-019-0540-7.
[227] Sheikhbahaei S, Afshar-Oromieh A, Eiber M, Solnes LB, Javadi MS, Ross AE, et al. Pearls and pitfalls in clinical interpretation of prostate-specific membrane antigen (PSMA)-targeted PET imaging. Eur J Nucl Med Mol Imaging 2017;44:2117–36. https://doi.org/10.1007/s00259-017-3780-7.
[228] Fendler WP, Calais J, Eiber M, Flavell RR, Mishoe A, Feng FY, et al. Assessment of 68Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer: A Prospective Single-Arm Clinical Trial. JAMA Oncol 2019;5:856–63. https://doi.org/10.1001/jamaoncol.2019.0096.
[229] Rauscher I, Krönke M, König M, Gafita A, Maurer T, Horn T, et al. Matched-Pair Comparison of 68Ga-PSMA-11 PET/CT and 18F-PSMA-1007 PET/CT: Frequency of Pitfalls and Detection Efficacy in Biochemical Recurrence After Radical Prostatectomy. J Nucl Med 2020;61:51–7. https://doi.org/10.2967/jnumed.119.229187.
[230] Emmett L, Yin C, Crumbaker M, Hruby G, Kneebone A, Epstein R, et al. Rapid Modulation of PSMA Expression by Androgen Deprivation: Serial 68Ga-PSMA-11 PET in Men with Hormone-Sensitive and Castrate-Resistant Prostate Cancer Commencing Androgen Blockade. J Nucl Med 2019;60:950–4. https://doi.org/10.2967/jnumed.118.223099.
[231] Benešová M, Schäfer M, Bauder-Wüst U, Afshar-Oromieh A, Kratochwil C, Mier W, et al. Preclinical Evaluation of a Tailor-Made DOTA-Conjugated PSMA Inhibitor with Optimized Linker Moiety for Imaging and Endoradiotherapy of Prostate Cancer. J Nucl Med 2015;56:914–20. https://doi.org/10.2967/jnumed.114.147413.
[232] Ghosh SC, Pinkston KL, Robinson H, Harvey BR, Wilganowski N, Gore K, et al. Comparison of DOTA and NODAGA as chelators for (64)Cu-labeled immunoconjugates. Nucl Med Biol 2015;42:177–83. https://doi.org/10.1016/j.nucmedbio.2014.09.009.
[233] Cantiello F, Crocerossa F, Russo GI, Gangemi V, Ferro M, Vartolomei MD, et al. Comparison Between 64Cu-PSMA-617 PET/CT and 18F-Choline PET/CT Imaging in Early Diagnosis of Prostate Cancer Biochemical Recurrence. Clin Genitourin Cancer 2018;16:385–91. https://doi.org/10.1016/j.clgc.2018.05.014.
[234] Sevcenco S, Klingler HC, Eredics K, Friedl A, Schneeweiss J, Knoll P, et al. Application of Cu-64 NODAGA-PSMA PET in Prostate Cancer. Adv Ther 2018;35:779–84. https://doi.org/10.1007/s12325-018-0711-3.
[235] Hoberück S, Wunderlich G, Michler E, Hölscher T, Walther M, Seppelt D, et al. Dual-time-point 64 Cu-PSMA-617-PET/CT in patients suffering from prostate cancer. J Labelled Comp Radiopharm 2019;62:523–32. https://doi.org/10.1002/jlcr.3745.
[236] Okudaira H, Shikano N, Nishii R, Miyagi T, Yoshimoto M, Kobayashi M, et al. Putative transport mechanism and intracellular fate of trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid in human prostate cancer. J Nucl Med 2011;52:822–9. https://doi.org/10.2967/jnumed.110.086074.
[237] Oka S, Okudaira H, Yoshida Y, Schuster DM, Goodman MM, Shirakami Y. Transport mechanisms of trans-1-amino-3-fluoro[1-(14)C]cyclobutanecarboxylic acid in prostate cancer cells. Nucl Med Biol 2012;39:109–19. https://doi.org/10.1016/j.nucmedbio.2011.06.008.
[238] Sun A, Liu X, Tang G. Carbon-11 and Fluorine-18 Labeled Amino Acid Tracers for Positron Emission Tomography Imaging of Tumors. Front Chem 2018;5. https://doi.org/10.3389/fchem.2017.00124.
[239] Fuchs BC, Bode BP. Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 2005;15:254–66. https://doi.org/10.1016/j.semcancer.2005.04.005.
[240] Xu M, Sakamoto S, Matsushima J, Kimura T, Ueda T, Mizokami A, et al. Up-Regulation of LAT1 during Antiandrogen Therapy Contributes to Progression in Prostate Cancer Cells. J Urol 2016;195:1588–97. https://doi.org/10.1016/j.juro.2015.11.071.
[241] Okudaira H, Oka S, Ono M, Nakanishi T, Schuster DM, Kobayashi M, et al. Accumulation of Trans-1-Amino-3-[18F]Fluorocyclobutanecarboxylic Acid in Prostate Cancer due to Androgen-Induced Expression of Amino Acid Transporters. Mol Imaging Biol 2014;16:756–64. https://doi.org/10.1007/s11307-014-0756-x.
[242] Ono M, Oka S, Okudaira H, Nakanishi T, Mizokami A, Kobayashi M, et al. [(14)C]Fluciclovine (alias anti-[(14)C]FACBC) uptake and ASCT2 expression in castration-resistant prostate cancer cells. Nucl Med Biol 2015;42:887–92. https://doi.org/10.1016/j.nucmedbio.2015.07.005.
[243] Akin-Akintayo OO, Jani AB, Odewole O, Tade FI, Nieh PT, Master VA, et al. Change in Salvage Radiotherapy Management Based on Guidance With FACBC (Fluciclovine) PET/CT in Postprostatectomy Recurrent Prostate Cancer. Clinical Nuclear Medicine 2017;42:e22. https://doi.org/10.1097/RLU.0000000000001379.
[244] Kairemo K, Rasulova N, Partanen K, Joensuu T. Preliminary clinical experience of trans-1-Amino-3-(18)F-fluorocyclobutanecarboxylic Acid (anti-(18)F-FACBC) PET/CT imaging in prostate cancer patients. Biomed Res Int 2014;2014:305182. https://doi.org/10.1155/2014/305182.
[245] Bach-Gansmo T, Nanni C, Nieh PT, Zanoni L, Bogsrud TV, Sletten H, et al. Multisite Experience of the Safety, Detection Rate and Diagnostic Performance of Fluciclovine (18F) Positron Emission Tomography/Computerized Tomography Imaging in the Staging of Biochemically Recurrent Prostate Cancer. J Urol 2017;197:676–83. https://doi.org/10.1016/j.juro.2016.09.117.
[246] Schuster DM, Nieh PT, Jani AB, Amzat R, Bowman FD, Halkar RK, et al. Anti-3-[(18)F]FACBC positron emission tomography-computerized tomography and (111)In-capromab pendetide single photon emission computerized tomography-computerized tomography for recurrent prostate carcinoma: results of a prospective clinical trial. J Urol 2014;191:1446–53. https://doi.org/10.1016/j.juro.2013.10.065.
[247] Oka S, Kanagawa M, Doi Y, Schuster DM, Goodman MM, Yoshimura H. PET Tracer 18F-Fluciclovine Can Detect Histologically Proven Bone Metastatic Lesions: A Preclinical Study in Rat Osteolytic and Osteoblastic Bone Metastasis Models. Theranostics 2017;7:2048–64. https://doi.org/10.7150/thno.19883.
[248] Chau A, Gardiner P, Colletti PM, Jadvar H. Diagnostic Performance of 18F-Fluciclovine in Detection of Prostate Cancer Bone Metastases. Clin Nucl Med 2018;43:e226–31. https://doi.org/10.1097/RLU.0000000000002130.
[249] Andriole GL, Kostakoglu L, Chau A, Duan F, Mahmood U, Mankoff DA, et al. The Impact of Positron Emission Tomography with 18F-Fluciclovine on the Treatment of Biochemical Recurrence of Prostate Cancer: Results from the LOCATE Trial. J Urol 2019;201:322–31. https://doi.org/10.1016/j.juro.2018.08.050.
[250] Nanni C, Zanoni L, Bach-Gansmo T, Minn H, Willoch F, Bogsrud TV, et al. [18F]Fluciclovine PET/CT: joint EANM and SNMMI procedure guideline for prostate cancer imaging-version 1.0. Eur J Nucl Med Mol Imaging 2020;47:579–91. https://doi.org/10.1007/s00259-019-04614-y.
[251] McParland BJ, Wall A, Johansson S, Sørensen J. The clinical safety, biodistribution and internal radiation dosimetry of [18F]fluciclovine in healthy adult volunteers. Eur J Nucl Med Mol Imaging 2013;40:1256–64. https://doi.org/10.1007/s00259-013-2403-1.
[252] Nye JA, Schuster DM, Yu W, Camp VM, Goodman MM, Votaw JR. Biodistribution and radiation dosimetry of the synthetic nonmetabolized amino acid analogue anti-18F-FACBC in humans. J Nucl Med 2007;48:1017–20. https://doi.org/10.2967/jnumed.107.040097.
[253] Schuster DM, Taleghani PA, Nieh PT, Master VA, Amzat R, Savir-Baruch B, et al. Characterization of primary prostate carcinoma by anti-1-amino-2-[(18)F] -fluorocyclobutane-1-carboxylic acid (anti-3-[(18)F] FACBC) uptake. Am J Nucl Med Mol Imaging 2013;3:85–96.
[254] Turkbey B, Mena E, Shih J, Pinto PA, Merino MJ, Lindenberg ML, et al. Localized prostate cancer detection with 18F FACBC PET/CT: comparison with MR imaging and histopathologic analysis. Radiology 2014;270:849–56. https://doi.org/10.1148/radiol.13130240.
[255] Shoup TM, Olson J, Hoffman JM, Votaw J, Eshima D, Eshima L, et al. Synthesis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med 1999;40:331–8.
[256] Schuster DM, Votaw JR, Nieh PT, Yu W, Nye JA, Master V, et al. Initial experience with the radiotracer anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid with PET/CT in prostate carcinoma. J Nucl Med 2007;48:56–63.
[257] Schuster DM, Nanni C, Fanti S, Oka S, Okudaira H, Inoue Y, et al. Anti-1-amino-3-18F-fluorocyclobutane-1-carboxylic acid: physiologic uptake patterns, incidental findings, and variants that may simulate disease. J Nucl Med 2014;55:1986–92. https://doi.org/10.2967/jnumed.114.143628.
[258] Ulaner GA, Schuster DM. Amino Acid Metabolism as a Target for Breast Cancer Imaging. PET Clin 2018;13:437–44. https://doi.org/10.1016/j.cpet.2018.02.009.
[259] Parent EE, Benayoun M, Ibeanu I, Olson JJ, Hadjipanayis CG, Brat DJ, et al. [18F]Fluciclovine PET discrimination between high- and low-grade gliomas. EJNMMI Research 2018;8:67. https://doi.org/10.1186/s13550-018-0415-3.
[260] Sannananja B, Shah HU, Behnia F. 18F-Fluciclovine Uptake by an Incidentally Detected Hepatocellular Carcinoma in a Case of Biochemically Recurrent Prostate Cancer. Clin Nucl Med 2018;43:695–6. https://doi.org/10.1097/RLU.0000000000002176.
[261] Amzat R, Taleghani P, Miller DL, Beitler JJ, Bellamy LM, Nye JA, et al. Pilot study of the utility of the synthetic PET amino-acid radiotracer anti-1-amino-3-[(18)F]fluorocyclobutane-1-carboxylic acid for the noninvasive imaging of pulmonary lesions. Mol Imaging Biol 2013;15:633–43. https://doi.org/10.1007/s11307-012-0606-7.
[262] Schuster DM, Nye JA, Nieh PT, Votaw JR, Halkar RK, Issa MM, et al. Initial experience with the radiotracer anti-1-amino-3-[18F]Fluorocyclobutane-1-carboxylic acid (anti-[ 18F]FACBC) with PET in renal carcinoma. Mol Imaging Biol 2009;11:434–8. https://doi.org/10.1007/s11307-009-0220-5.
[263] Nguyen Q-BD, Amato R, Riascos R, Ballester L, Tandon N, Blanco A, et al. Fluciclovine, Anti-1-Amino-3-[18F]-Fluorocyclobutane-1-Carboxylic Acid: A Novel Radiotracer for Meningioma. World Neurosurg 2018;119:132–6. https://doi.org/10.1016/j.wneu.2018.07.231.
[264] Lebtahi R, Cadiot G, Sarda L, Daou D, Faraggi M, Petegnief Y, et al. Clinical impact of somatostatin receptor scintigraphy in the management of patients with neuroendocrine gastroenteropancreatic tumors. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 1997;38:853–8.
[265] Geijer H akan, Breimer LH. Somatostatin receptor PET/CT in neuroendocrine tumours: update on systematic review and meta-analysis. European Journal of Nuclear Medicine and Molecular Imaging 2013;40:1770–1780. https://doi.org/10.1007/s00259-013-2482-z.
[266] Fendler WP, Barrio M, Spick C, Allen-Auerbach M, Ambrosini V, Benz M, et al. 68Ga-DOTATATE PET/CT Interobserver Agreement for Neuroendocrine Tumor Assessment: Results of a Prospective Study on 50 Patients. J Nucl Med 2017;58:307–11. https://doi.org/10.2967/jnumed.116.179192.
[267] Skoura E, Michopoulou S, Mohmaduvesh M, Panagiotidis E, Al Harbi M, Toumpanakis C, et al. The Impact of 68Ga-DOTATATE PET/CT Imaging on Management of Patients with Neuroendocrine Tumors: Experience from a National Referral Center in the United Kingdom. Journal of Nuclear Medicine 2016;57:34–40. https://doi.org/10.2967/jnumed.115.166017.
[268] Sandstrom M, Velikyan I, Garske-Roman U, Sorensen J, Eriksson B, Granberg D, et al. Comparative Biodistribution and Radiation Dosimetry of 68Ga-DOTATOC and 68Ga-DOTATATE in Patients with Neuroendocrine Tumors. Journal of Nuclear Medicine 2013;54:1755–1759. https://doi.org/10.2967/jnumed.113.120600.
[269] Pettinato C, Sarnelli A, Di Donna M, Civollani S, Nanni C, Montini G, et al. 68Ga-DOTANOC: biodistribution and dosimetry in patients affected by neuroendocrine tumors. European Journal of Nuclear Medicine and Molecular Imaging 2008;35:72–79. https://doi.org/10.1007/s00259-007-0587-y.
[270] PEARSE AGE. THE CYTOCHEMISTRY AND ULTRASTRUCTURE OF POLYPEPTIDE HORMONE-PRODUCING CELLS OF THE APUD SERIES AND THE EMBRYOLOGIC, PHYSIOLOGIC AND PATHOLOGIC IMPLICATIONS OF THE CONCEPT. Journal of Histochemistry & Cytochemistry 1969;17:303–313. https://doi.org/10.1177/17.5.303.
[271] Bergström M, Eriksson B, Oberg K, Sundin A, Ahlström H, Lindner KJ, et al. In vivo demonstration of enzyme activity in endocrine pancreatic tumors: decarboxylation of carbon-11-DOPA to carbon-11-dopamine. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 1996;37:32–7.
[272] Imperiale A, Rust E, Gabriel S, Detour J, Goichot B, Duclos B, et al. 18F-Fluorodihydroxyphenylalanine PET/CT in Patients with Neuroendocrine Tumors of Unknown Origin: Relation to Tumor Origin and Differentiation n.d. https://doi.org/10.2967/jnumed.113.126896.
[273] Balogova S, Talbot J-N, Nataf V, Michaud L, Huchet V, Kerrou K, et al. 18F-Fluorodihydroxyphenylalanine vs other radiopharmaceuticals for imaging neuroendocrine tumours according to their type. European Journal of Nuclear Medicine and Molecular Imaging 2013;40:943–966. https://doi.org/10.1007/s00259-013-2342-x.
[274] Piccardo A, Lopci E, Conte M, Garaventa A, Foppiani L, Altrinetti V, et al. Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study. European Journal of Nuclear Medicine and Molecular Imaging 2012;39:57–71. https://doi.org/10.1007/s00259-011-1938-2.
[275] Lopci E, Piccardo A, Nanni C, Altrinetti V, Garaventa A, Pession A, et al. 18F-DOPA PET/CT in Neuroblastoma. Clinical Nuclear Medicine 2012;37:e73–e78. https://doi.org/10.1097/RLU.0b013e3182485172.
[276] Liu Y-L, Lu M-Y, Chang H-H, Lu C-C, Lin D-T, Jou S-T, et al. Diagnostic FDG and FDOPA positron emission tomography scans distinguish the genomic type and treatment outcome of neuroblastoma. Oncotarget 2016;7:18774–86. https://doi.org/10.18632/oncotarget.7933.
[277] Lu M-Y, Liu Y-L, Chang H-H, Jou S-T, Yang Y-L, Lin K-H, et al. Characterization of Neuroblastic Tumors Using 18F-FDOPA PET. Journal of Nuclear Medicine 2013;54:42–49. https://doi.org/10.2967/jnumed.112.102772.
[278] Tripathi M, Sharma R, DʼSouza M, Jaimini A, Panwar P, Varshney R, et al. Comparative Evaluation of F-18 FDOPA, F-18 FDG, and F-18 FLT-PET/CT for Metabolic Imaging of Low Grade Gliomas. Clinical Nuclear Medicine 2009;34:878–883. https://doi.org/10.1097/RLU.0b013e3181becfe0.
[279] Karunanithi S, Sharma P, Kumar A, Khangembam BC, Bandopadhyaya GP, Kumar R, et al. 18F-FDOPA PET/CT for detection of recurrence in patients with glioma: prospective comparison with 18F-FDG PET/CT. European Journal of Nuclear Medicine and Molecular Imaging 2013;40:1025–1035. https://doi.org/10.1007/s00259-013-2384-0.
[280] Ledezma CJ, Chen W, Sai V, Freitas B, Cloughesy T, Czernin J, et al. 18F-FDOPA PET/MRI fusion in patients with primary/recurrent gliomas: Initial experience. European Journal of Radiology 2009;71:242–248. https://doi.org/10.1016/j.ejrad.2008.04.018.
[281] Chen W, Silverman DHS, Delaloye S, Czernin J, Kamdar N, Pope W, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2006;47:904–11.
[282] Walter F, Cloughesy T, Walter MA, Lai A, Nghiemphu P, Wagle N, et al. Impact of 3,4-Dihydroxy-6-18 F-Fluoro-L-Phenylalanine PET/CT on Managing Patients with Brain Tumors: The Referring Physician’s Perspective. J Nucl Med 2012;53:393–398. https://doi.org/10.2967/jnumed.111.095711.
[283] Treglia G, Mirk P, Giordano A, Rufini V. Diagnostic performance of fluorine-18-dihydroxyphenylalanine positron emission tomography in diagnosing and localizing the focal form of congenital hyperinsulinism: a meta-analysis. Pediatric Radiology 2012;42:1372–1379. https://doi.org/10.1007/s00247-012-2459-2.
[284] Blomberg BA, Moghbel MC, Saboury B, Stanley CA, Alavi A. The value of radiologic interventions and (18)F-DOPA PET in diagnosing and localizing focal congenital hyperinsulinism: systematic review and meta-analysis. Molecular Imaging and Biology : MIB : The Official Publication of the Academy of Molecular Imaging 2013;15:97–105. https://doi.org/10.1007/s11307-012-0572-0.
[285] Miederer M, Fottner C, Rossmann H, Helisch A, Papaspyrou K, Bartsch O, et al. High incidence of extraadrenal paraganglioma in families with SDHx syndromes detected by functional imaging with [18F]fluorodihydroxyphenylalanine PET. European Journal of Nuclear Medicine and Molecular Imaging 2013;40:889–896. https://doi.org/10.1007/s00259-013-2346-6.
[286] Timmers HJLM, Chen CC, Carrasquillo JA, Whatley M, Ling A, Havekes B, et al. Comparison of 18F-fluoro-L-DOPA, 18F-fluoro-deoxyglucose, and 18F-fluorodopamine PET and 123I-MIBG scintigraphy in the localization of pheochromocytoma and paraganglioma. The Journal of Clinical Endocrinology and Metabolism 2009;94:4757–67. https://doi.org/10.1210/jc.2009-1248.
[287] King KS, Chen CC, Alexopoulos DK, Whatley MA, Reynolds JC, Patronas N, et al. Functional imaging of SDHx-related head and neck paragangliomas: comparison of 18F-fluorodihydroxyphenylalanine, 18F-fluorodopamine, 18F-fluoro-2-deoxy-D-glucose PET, 123I-metaiodobenzylguanidine scintigraphy, and 111In-pentetreotide scintigraphy. The Journal of Clinical Endocrinology and Metabolism 2011;96:2779–85. https://doi.org/10.1210/jc.2011-0333.
[288] Treglia G, Cocciolillo F, de Waure C, Di Nardo F, Gualano MR, Castaldi P, et al. Diagnostic performance of 18F-dihydroxyphenylalanine positron emission tomography in patients with paraganglioma: a meta-analysis. Eur J Nucl Med Mol Imaging 2012;39:1144–53. https://doi.org/10.1007/s00259-012-2087-y.
[289] Hoegerle S, Nitzsche E, Altehoefer C, Ghanem N, Manz T, Brink I, et al. Pheochromocytomas: Detection with 18 F DOPA Whole-Body PET—Initial Results. Radiology 2002;222:507–512. https://doi.org/10.1148/radiol.2222010622.
[290] Rufini V, Treglia G, Castaldi P, Perotti G, Calcagni ML, Corsello SM, et al. Comparison of 123I-MIBG SPECT-CT and 18F-DOPA PET-CT in the evaluation of patients with known or suspected recurrent paraganglioma. Nuclear Medicine Communications 2011;32:575–582. https://doi.org/10.1097/MNM.0b013e328345a340.
[291] Rischke HC, Benz MR, Wild D, Mix M, Dumont RA, Campbell D, et al. Correlation of the Genotype of Paragangliomas and Pheochromocytomas with Their Metabolic Phenotype on 3,4-Dihydroxy-6-18F-Fluoro-L-Phenylalanin PET. Journal of Nuclear Medicine 2012;53:1352–1358. https://doi.org/10.2967/jnumed.111.101303.
[292] Weisbrod AB, Kitano M, Gesuwan K, Millo C, Herscovitch P, Nilubol N, et al. Clinical utility of functional imaging with 18F-FDOPA in Von Hippel-Lindau syndrome. The Journal of Clinical Endocrinology and Metabolism 2012;97:E613–7. https://doi.org/10.1210/jc.2011-2626.
[293] Hoegerle S, Ghanem N, Altehoefer C, Schipper J, Brink I, Moser E, et al. 18F-DOPA positron emission tomography for the detection of glomus tumours. European Journal of Nuclear Medicine and Molecular Imaging 2003;30:689–694. https://doi.org/10.1007/s00259-003-1115-3.
[294] Imani F, Agopian VG, Auerbach MS, Walter MA, Imani F, Benz MR, et al. 18F-FDOPA PET and PET/CT Accurately Localize Pheochromocytomas. Journal of Nuclear Medicine 2009;50:513–519. https://doi.org/10.2967/jnumed.108.058396.
[295] Kauhanen S, Seppanen M, Ovaska J, Minn H, Bergman J, Korsoff P, et al. The clinical value of [18F]fluoro-dihydroxyphenylalanine positron emission tomography in primary diagnosis, staging, and restaging of neuroendocrine tumors. Endocrine Related Cancer 2008;16:255–265. https://doi.org/10.1677/ERC-08-0229.
[296] Luster M, Karges W, Zeich K, Pauls S, Verburg FA, Dralle H, et al. Clinical value of 18F-fluorodihydroxyphenylalanine positron emission tomography/computed tomography (18F-DOPA PET/CT) for detecting pheochromocytoma. European Journal of Nuclear Medicine and Molecular Imaging 2010;37:484–493. https://doi.org/10.1007/s00259-009-1294-7.
[297] Taïeb D, Tessonnier L, Sebag F, Niccoli-Sire P, Morange I, Colavolpe C, et al. The role of 18F-FDOPA and 18F-FDG-PET in the management of malignant and multifocal phaeochromocytomas. Clinical Endocrinology 2008;69:580–586. https://doi.org/10.1111/j.1365-2265.2008.03257.x.
[298] Fottner C, Helisch A, Anlauf M, Rossmann H, Musholt TJ, Kreft A, et al. F-Fluoro-L-Dihydroxyphenylalanine Positron Emission Tomography Is Superior to I-Metaiodobenzyl-Guanidine Scintigraphy in the Detection of Extraadrenal and Hereditary Pheochromocytomas and Paragangliomas: Correlation with Vesicular Monoamine Transporter Ex n.d. https://doi.org/10.1210/jc.2009-2352.
[299] Charrier N, Deveze A, Fakhry N, Sebag F, Morange I, Gaborit B, et al. Comparison of [111In]pentetreotide-SPECT and [18F]FDOPA-PET in the localization of extra-adrenal paragangliomas: the case for a patient-tailored use of nuclear imaging modalities. Clinical Endocrinology 2011;74:21–29. https://doi.org/10.1111/j.1365-2265.2010.03893.x.
[300] Fiebrich H-B, Brouwers AH, Kerstens MN, Pijl MEJ, Kema IP, de Jong JR, et al. 6-[F-18]Fluoro-L-dihydroxyphenylalanine positron emission tomography is superior to conventional imaging with (123)I-metaiodobenzylguanidine scintigraphy, computer tomography, and magnetic resonance imaging in localizing tumors causing catecholamine excess. The Journal of Clinical Endocrinology and Metabolism 2009;94:3922–30. https://doi.org/10.1210/jc.2009-1054.
[301] Archier A, Varoquaux A, Garrigue P, Montava M, Guerin C, Gabriel S, et al. Prospective comparison of 68Ga-DOTATATE and 18F-FDOPA PET/CT in patients with various pheochromocytomas and paragangliomas with emphasis on sporadic cases. European Journal of Nuclear Medicine and Molecular Imaging 2016;43:1248–1257. https://doi.org/10.1007/s00259-015-3268-2.
[302] Montravers F, Kerrou K, Huchet V, Nataf V, Talbot J-N. Evaluation of the impact of FDOP-PET on the patients referred for pheochromocytoma. Journal of Nuclear Medicine 2008;49:365P–365P.
[303] Kloos (Chair) RT, Eng C, Evans DB, Francis GL, Gagel RF, Gharib H, et al. Medullary Thyroid Cancer: Management Guidelines of the American Thyroid Association. Thyroid 2009;19:565–612. https://doi.org/10.1089/thy.2008.0403.
[304] Koopmans KP, Neels OC, Kema IP, Elsinga PH, Sluiter WJ, Vanghillewe K, et al. Improved Staging of Patients With Carcinoid and Islet Cell Tumors With 18F-Dihydroxy-Phenyl-Alanine and 11C-5-Hydroxy-Tryptophan Positron Emission Tomography. Journal of Clinical Oncology 2008;26:1489–1495. https://doi.org/10.1200/JCO.2007.15.1126.
[305] Kauhanen S, Schalin-Jantti C, Seppanen M, Kajander S, Virtanen S, Schildt J, et al. Complementary Roles of 18F-DOPA PET/CT and 18F-FDG PET/CT in Medullary Thyroid Cancer. Journal of Nuclear Medicine 2011;52:1855–1863. https://doi.org/10.2967/jnumed.111.094771.
[306] Verbeek HHG, Plukker JTM, Koopmans KP, de Groot JWB, Hofstra RMW, Muller Kobold AC, et al. Clinical Relevance of 18F-FDG PET and 18F-DOPA PET in Recurrent Medullary Thyroid Carcinoma. Journal of Nuclear Medicine 2012;53:1863–1871. https://doi.org/10.2967/jnumed.112.105940.
[307] Langsteger W, Heinisch M, Fogelman I. The Role of Fluorodeoxyglucose, 18F-Dihydroxyphenylalanine, 18F-Choline, and 18F-Fluoride in Bone Imaging with Emphasis on Prostate and Breast. Seminars in Nuclear Medicine 2006;36:73–92. https://doi.org/10.1053/j.semnuclmed.2005.09.002.
[308] Beuthien-Baumann B, Strumpf A, Zessin J, Bredow J, Kotzerke J. Diagnostic impact of PET with 18F-FDG, 18F-DOPA and 3-O-methyl-6-[18F]fluoro-DOPA in recurrent or metastatic medullary thyroid carcinoma. European Journal of Nuclear Medicine and Molecular Imaging 2007;34:1604–1609. https://doi.org/10.1007/s00259-007-0425-2.
[309] Beheshti M, Pöcher S, Vali R, Waldenberger P, Broinger G, Nader M, et al. The value of 18F-DOPA PET-CT in patients with medullary thyroid carcinoma: comparison with 18F-FDG PET-CT. European Radiology 2009;19:1425–1434. https://doi.org/10.1007/s00330-008-1280-7.
[310] Bogsrud TV, Karantanis D, Nathan MA, Mullan BP, Wiseman GA, Kasperbauer JL, et al. The Prognostic Value of 2-Deoxy-2-[18F]Fluoro-d-Glucose Positron Emission Tomography in Patients With Suspected Residual or Recurrent Medullary Thyroid Carcinoma. Molecular Imaging and Biology 2010;12:547–553. https://doi.org/10.1007/s11307-009-0276-2.
[311] Marzola MC, Pelizzo MR, Ferdeghini M, Toniato A, Massaro A, Ambrosini V, et al. Dual PET/CT with 18F-DOPA and 18F-FDG in metastatic medullary thyroid carcinoma and rapidly increasing calcitonin levels: Comparison with conventional imaging. European Journal of Surgical Oncology (EJSO) 2010;36:414–421. https://doi.org/10.1016/j.ejso.2010.01.001.
[312] Treglia G, Castaldi P, Villani MF, Perotti G, de Waure C, Filice A, et al. Comparison of 18F-DOPA, 18F-FDG and 68Ga-somatostatin analogue PET/CT in patients with recurrent medullary thyroid carcinoma. European Journal of Nuclear Medicine and Molecular Imaging 2012;39:569–580. https://doi.org/10.1007/s00259-011-2031-6.
[313] Archier A, Heimburger C, Guerin C, Morange I, Palazzo FF, Henry J-F, et al. 18F-DOPA PET/CT in the diagnosis and localization of persistent medullary thyroid carcinoma. European Journal of Nuclear Medicine and Molecular Imaging 2016;43:1027–1033. https://doi.org/10.1007/s00259-015-3227-y.
[314] Slavikova K, Montravers F, Treglia G, Kunikowska J, Kaliska L, Vereb M, et al. What is currently the best radiopharmaceutical for the hybrid PET/CT detection of recurrent medullary thyroid carcinoma? Current Radiopharmaceuticals 2013;6:96–105.
[315] Soussan M, Nataf V, Kerrou K, Grahek D, Pascal O, Talbot J-N, et al. Added value of early 18F-FDOPA PET/CT acquisition time in medullary thyroid cancer. Nuclear Medicine Communications 2012;33:775–779. https://doi.org/10.1097/MNM.0b013e3283543304.
[316] Montravers F, Grahek D, Kerrou K, Ruszniewski P, de Beco V, Aide N, et al. Can fluorodihydroxyphenylalanine PET replace somatostatin receptor scintigraphy in patients with digestive endocrine tumors? Journal of Nuclear Medicine : Official Publication, Society of Nuclear Medicine 2006;47:1455–62.
[317] Yakemchuk VN, Jager PL, Chirakal R, Reid R, Major P, Gulenchyn KY. PET/CT using 18F-FDOPA provides improved staging of carcinoid tumor patients in a Canadian setting. Nuclear Medicine Communications 2012;33:322–330. https://doi.org/10.1097/MNM.0b013e32834f2603.
[318] Hoegerle S, Altehoefer C, Ghanem N, Brink I, Moser E, Nitzsche E. 18F-DOPA positron emission tomography for tumour detection in patients with medullary thyroid carcinoma and elevated calcitonin levels. European Journal of Nuclear Medicine 2001;28:64–71. https://doi.org/10.1007/s002590000404.
[319] Helali M, Addeo P, Heimburger C, Detour J, Goichot B, Bachellier P, et al. Carbidopa-assisted 18F-fluorodihydroxyphenylalanine PET/CT for the localization and staging of non-functioning neuroendocrine pancreatic tumors. Annals of Nuclear Medicine 2016;30:659–668. https://doi.org/10.1007/s12149-016-1110-y.
[320] EANM Internal Dosimetry Task Force Report. Treatment Planning For Molecular Radiotherapy: Potential And Prospects 2017.
[321] Bombardieri E, Giammarile F, Aktolun C, Baum RP, Bischof Delaloye A, Maffioli L, et al. 131 I/ 123 I-Metaiodobenzylguanidine (mIBG) scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 2010;37:2436–2446. https://doi.org/10.1007/s00259-010-1545-7.
[322] Gascard P, Tlsty TD. Carcinoma-associated fibroblasts: orchestrating the composition of malignancy. Genes Dev 2016;30:1002–19. https://doi.org/10.1101/gad.279737.116.
[323] Lindner T, Loktev A, Giesel F, Kratochwil C, Altmann A, Haberkorn U. Targeting of activated fibroblasts for imaging and therapy. EJNMMI Radiopharm Chem 2019;4:16. https://doi.org/10.1186/s41181-019-0069-0.
[324] Garin-Chesa P, Old LJ, Rettig WJ. Cell surface glycoprotein of reactive stromal fibroblasts as a potential antibody target in human epithelial cancers. Proc Natl Acad Sci USA 1990;87:7235–9. https://doi.org/10.1073/pnas.87.18.7235.
[325] Jansen K, Heirbaut L, Cheng JD, Joossens J, Ryabtsova O, Cos P, et al. Selective Inhibitors of Fibroblast Activation Protein (FAP) with a (4-Quinolinoyl)-glycyl-2-cyanopyrrolidine Scaffold. ACS Med Chem Lett 2013;4:491–6. https://doi.org/10.1021/ml300410d.
[326] Loktev A, Lindner T, Mier W, Debus J, Altmann A, Jäger D, et al. A Tumor-Imaging Method Targeting Cancer-Associated Fibroblasts. J Nucl Med 2018;59:1423–9. https://doi.org/10.2967/jnumed.118.210435.
[327] Loktev A, Lindner T, Burger E-M, Altmann A, Giesel F, Kratochwil C, et al. Development of Fibroblast Activation Protein-Targeted Radiotracers with Improved Tumor Retention. J Nucl Med 2019;60:1421–9. https://doi.org/10.2967/jnumed.118.224469.
[328] Lindner T, Loktev A, Altmann A, Giesel F, Kratochwil C, Debus J, et al. Development of Quinoline-Based Theranostic Ligands for the Targeting of Fibroblast Activation Protein. J Nucl Med 2018;59:1415–22. https://doi.org/10.2967/jnumed.118.210443.
[329] Koerber SA, Staudinger F, Kratochwil C, Adeberg S, Haefner MF, Ungerechts G, et al. The role of FAPI-PET/CT for patients with malignancies of the lower gastrointestinal tract - first clinical experience. J Nucl Med 2020. https://doi.org/10.2967/jnumed.119.237016.
[330] Giesel FL, Kratochwil C, Lindner T, Marschalek MM, Loktev A, Lehnert W, et al. 68Ga-FAPI PET/CT: Biodistribution and Preliminary Dosimetry Estimate of 2 DOTA-Containing FAP-Targeting Agents in Patients with Various Cancers. J Nucl Med 2019;60:386–92. https://doi.org/10.2967/jnumed.118.215913.
[331] Kratochwil C, Flechsig P, Lindner T, Abderrahim L, Altmann A, Mier W, et al. 68Ga-FAPI PET/CT: Tracer Uptake in 28 Different Kinds of Cancer. J Nucl Med 2019;60:801–5. https://doi.org/10.2967/jnumed.119.227967.
[332] Röhrich M, Loktev A, Wefers AK, Altmann A, Paech D, Adeberg S, et al. IDH-wildtype glioblastomas and grade III/IV IDH-mutant gliomas show elevated tracer uptake in fibroblast activation protein–specific PET/CT. Eur J Nucl Med Mol Imaging 2019;46:2569–80. https://doi.org/10.1007/s00259-019-04444-y.
[333] Watabe T, Liu Y, Kaneda-Nakashima K, Shirakami Y, Lindner T, Ooe K, et al. Theranostics targeting fibroblast activation protein in the tumor stroma: 64Cu and 225Ac labelled FAPI-04 in pancreatic cancer xenograft mouse models. J Nucl Med 2019:jnumed.119.233122. https://doi.org/10.2967/jnumed.119.233122.
[334] Varasteh Z, Mohanta S, Robu S, Braeuer M, Li Y, Omidvari N, et al. Molecular Imaging of Fibroblast Activity After Myocardial Infarction Using a 68Ga-Labeled Fibroblast Activation Protein Inhibitor, FAPI-04. J Nucl Med 2019;60:1743–9. https://doi.org/10.2967/jnumed.119.226993.
[335] Meyer C, Dahlbom M, Lindner T, Vauclin S, Mona C, Slavik R, et al. Radiation dosimetry and biodistribution of 68Ga-FAPI-46 PET imaging in cancer patients. J Nucl Med 2019:jnumed.119.236786. https://doi.org/10.2967/jnumed.119.236786.
[336] Arslan N, Oztürk E, Ilgan S, Urhan M, Karaçalioglu O, Pekcan M, et al. 99Tcm-MIBI scintimammography in the evaluation of breast lesions and axillary involvement: a comparison with mammography and histopathological diagnosis. Nuclear Medicine Communications 1999;20:317–25.
[337] Jentzen W, Freudenberg L, Eising EG, Sonnenschein W, Knust J, Bockisch A. Optimized 124I PET dosimetry protocol for radioiodine therapy of differentiated thyroid cancer. J Nucl Med 2008;49:1017–23. https://doi.org/10.2967/jnumed.107.047159.
[338] Hindorf C, Glatting G, Chiesa C, Lindén O, Flux G. EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry. Eur J Nucl Med Mol Imaging 2010;37:1238–50. https://doi.org/10.1007/s00259-010-1422-4.
[339] Ruhlmann M, Sonnenschein W, Nagarajah J, Binse I, Herrmann K, Jentzen W. Pretherapeutic 124I dosimetry reliably predicts intratherapeutic blood kinetics of 131I in patients with differentiated thyroid carcinoma receiving high therapeutic activities. Nucl Med Commun 2018;39:457–64. https://doi.org/10.1097/MNM.0000000000000817.
[340] Freudenberg LS, Jentzen W, Stahl A, Bockisch A, Rosenbaum-Krumme SJ. Clinical applications of 124I-PET/CT in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2011;38 Suppl 1:S48-56. https://doi.org/10.1007/s00259-011-1773-5.
[341] Maxon HR, Smith HS. Radioiodine-131 in the diagnosis and treatment of metastatic well differentiated thyroid cancer. Endocrinol Metab Clin North Am 1990;19:685–718.
[342] Maxon HR, Thomas SR, Hertzberg VS, Kereiakes JG, Chen I-W, Sperling MI, et al. Relation between Effective Radiation Dose and Outcome of Radioiodine Therapy for Thyroid Cancer. New England Journal of Medicine 1983;309:937–941. https://doi.org/10.1056/NEJM198310203091601.
[343] Johansson L, Mattsson S, Nosslin B, Leide-Svegborn S. Effective dose from radiopharmaceuticals. Eur J Nucl Med 1992;19:933–8. https://doi.org/10.1007/BF00175858.
[344] Johansson L, Mattson S, Nosslin B, Leide-Svegborn S. Effective dose from radiopharmaceuticals. Eur J Nucl Med 1993;20:570–570. https://doi.org/10.1007/BF00175174.
[345] Phan HTT, Jager PL, Paans AMJ, Plukker JTM, Sturkenboom MGG, Sluiter WJ, et al. The diagnostic value of 124I-PET in patients with differentiated thyroid cancer. Eur J Nucl Med Mol Imaging 2008;35:958–65. https://doi.org/10.1007/s00259-007-0660-6.
[346] Schlumberger M, Mancusi F, Baudin E, Pacini F. 131I therapy for elevated thyroglobulin levels. Thyroid 1997;7:273–6. https://doi.org/10.1089/thy.1997.7.273.
[347] Capoccetti F, Criscuoli B, Rossi G, Ferretti F, Manni C, Brianzoni E. The effectiveness of 124I PET/CT in patients with differentiated thyroid cancer. Q J Nucl Med Mol Imaging 2009;53:536–45.
[348] Ruhlmann M, Jentzen W, Ruhlmann V, Pettinato C, Rossi G, Binse I, et al. High Level of Agreement Between Pretherapeutic 124I PET and Intratherapeutic 131I Imaging in Detecting Iodine-Positive Thyroid Cancer Metastases. J Nucl Med 2016;57:1339–42. https://doi.org/10.2967/jnumed.115.169649.
[349] Piccardo A, Trimboli P, Foppiani L, Treglia G, Ferrarazzo G, Massollo M, et al. PET/CT in thyroid nodule and differentiated thyroid cancer patients. The evidence-based state of the art. Rev Endocr Metab Disord 2019;20:47–64. https://doi.org/10.1007/s11154-019-09491-2.
[350] Dietlein M, Dressler J, Farahati J, Grünwald F, Leisner B, Moser E, et al. [Procedure guidelines for radioiodine therapy of differentiated thyroid cancer (version 2)]. Nuklearmedizin 2004;43:115–20. https://doi.org/10.1267/nukl04040115.
[351] Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med 2001;42:1551–5.
[352] Durack DT, Street AC. Fever of unknown origin–reexamined and redefined. Current Clinical Topics in Infectious Diseases 1991;11:35–51.
[353] Vaidyanathan S, Patel CN, Scarsbrook AF, Chowdhury FU. FDG PET/CT in infection and inflammation—current and emerging clinical applications. Clinical Radiology 2015;70:787–800. https://doi.org/10.1016/j.crad.2015.03.010.
[354] Arnon-Sheleg E, Israel O, Keidar Z. PET/CT Imaging in Soft Tissue Infection and Inflammation-An Update. Semin Nucl Med 2020;50:35–49. https://doi.org/10.1053/j.semnuclmed.2019.07.005.
[355] Webb RL, Landau E, Klein D, DiPoce J, Volkin D, Belman J, et al. Effects of varying serum glucose levels on 18F-FDG biodistribution. Nucl Med Commun 2015;36:717–21. https://doi.org/10.1097/MNM.0000000000000319.
[356] Rabkin Z, Israel O, Keidar Z. Do hyperglycemia and diabetes affect the incidence of false-negative 18F-FDG PET/CT studies in patients evaluated for infection or inflammation and cancer? A Comparative analysis. J Nucl Med 2010;51:1015–20. https://doi.org/10.2967/jnumed.109.074294.
[357] Hess S, Scholtens AM, Gormsen LC. Patient Preparation and Patient-related Challenges with FDG-PET/CT in Infectious and Inflammatory Disease. PET Clin 2020;15:125–34. https://doi.org/10.1016/j.cpet.2019.11.001.
[358] Scholtens AM, van den Berk AM, van der Sluis NL, Esser JP, Lammers GK, de Klerk JMH, et al. Suppression of myocardial glucose metabolism in FDG PET/CT: impact of dose variation in heparin bolus pre-administration. Eur J Nucl Med Mol Imaging 2020. https://doi.org/10.1007/s00259-020-04713-1.
[359] Slart RHJA, Slart RHJA, Glaudemans AWJM, Chareonthaitawee P, Treglia G, Besson FL, et al. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC. Eur J Nucl Med Mol Imaging 2018;45:1250–69. https://doi.org/10.1007/s00259-018-3973-8.
[360] Jamar F, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, et al. EANM/SNMMI Guideline for 18 F-FDG Use in Inflammation and Infection* 2013. https://doi.org/10.2967/jnumed.112.112524.
[361] Signore A, Jamar F, Israel O, Buscombe J, Martin-Comin J, Lazzeri E. Clinical indications, image acquisition and data interpretation for white blood cells and anti-granulocyte monoclonal antibody scintigraphy: an EANM procedural guideline. Eur J Nucl Med Mol Imaging 2018;45:1816–31. https://doi.org/10.1007/s00259-018-4052-x.
[362] Roca M, De Vries EFJ, Jamar F, Israel O, Signore A, Roca M, et al. Guidelines for the labelling of leucocytes with 111 In-oxine. Eur J Nucl Med Mol Imaging 2010;37:835–841. https://doi.org/10.1007/s00259-010-1394-5.
[363] De Vries EFJ, Roca M, Jamar F, Israel O, Signore A, De Vries EFJ, et al. Guidelines for the labelling of leucocytes with 99m Tc-HMPAO. Eur J Nucl Med Mol Imaging 2010;37:842–848. https://doi.org/10.1007/s00259-010-1394-4.
[364] Gratz S, Reize P, Kemke B, Kampen WU, Luster M, Höffken H. Targeting osteomyelitis with complete [99mTc]besilesomab and fragmented [99mTc]sulesomab antibodies: kinetic evaluations. Q J Nucl Med Mol Imaging 2016;60:413–23.
[365] Meller J, Liersch T, Oezerden MM, Sahlmann CO, Meller B. Targeting NCA-95 and other granulocyte antigens and receptors with radiolabeled monoclonal antibodies (Mabs). Q J Nucl Med Mol Imaging 2010;54:582–98.
[366] Xing D, Ma X, Ma J, Wang J, Chen Y, Yang Y. Use of anti-granulocyte scintigraphy with 99mTc-labeled monoclonal antibodies for the diagnosis of periprosthetic infection in patients after total joint arthroplasty: a diagnostic meta-analysis. PLoS ONE 2013;8:e69857. https://doi.org/10.1371/journal.pone.0069857.
[367] Wang G, Zhao K, Liu Z, Dong M, Yang S. A meta-analysis of fluorodeoxyglucose-positron emission tomography versus scintigraphy in the evaluation of suspected osteomyelitis. Nucl Med Commun 2011;32:1134–42. https://doi.org/10.1097/MNM.0b013e32834b455c.
[368] European Medicines Agency. LeukoScan. European Medicines Agency 2018. https://www.ema.europa.eu/en/medicines/human/EPAR/leukoscan (accessed July 20, 2020).
[369] European Medicines Agency. Scintimun. European Medicines Agency 2018. https://www.ema.europa.eu/en/medicines/human/EPAR/scintimun (accessed July 20, 2020).
[370] Salaün P-Y, Abgral R, Malard O, Querellou-Lefranc S, Quere G, Wartski M, et al. Good clinical practice recommendations for the use of PET/CT in oncology. Eur J Nucl Med Mol Imaging 2020;47:28–50. https://doi.org/10.1007/s00259-019-04553-8.